Ryu Jaehyeon, Qiang Yi, Chen Longtu, Li Gen, Han Xun, Woon Eric, Bai Tianyu, Qi Yongli, Zhang Shaopeng, Liou Jyun-You, Seo Kyung Jin, Feng Bin, Fang Hui
Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
Adv Mater. 2024 Sep;36(36):e2403141. doi: 10.1002/adma.202403141. Epub 2024 Jul 16.
Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single-unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self-conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high-fidelity recording of single-unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single-cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.
基于硅酮的设备有潜力与神经组织实现理想的界面,但主要由于成熟的电子材料与柔软的弹性体基板之间的机械不匹配,在可扩展性方面存在问题。本研究提出了一种新颖的方法,通过多功能纳米网使用传统电极材料,以在聚二甲基硅氧烷(PDMS)硅酮上直接实现具有前所未有的细胞分辨率的可靠弹性微电极。这种经过工程设计的纳米网具有平面内纳米级网格图案,通过设计由三种薄膜材料堆叠而成,具体为用于机械缓冲的聚对二甲苯-C、用于导电的金(Au)以及用于改善电化学界面的聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS)。通过从小鼠背根神经节(DRG)的小且弯曲的硬膜外表面进行单单元记录,对纳米网弹性神经电子器件进行了验证,结果表明该器件具有自贴合性,且与需要手动按压的塑料对照器件相比,记录质量更优。来自体内硬膜外记录的电极缩放研究进一步揭示了对于高保真记录单单元活动和复合动作电位而言,细胞分辨率的必要性。除了创建一种微创设备以在单细胞分辨率下有效地与DRG感觉传入神经进行界面连接外,本研究还将纳米网技术确立为利用传统电极材料制造新型弹性神经电子器件的实用途径。