Wang Shaolei, Nie Yuanyuan, Zhu Hangyu, Xu Yurui, Cao Shitai, Zhang Jiaxue, Li Yanyan, Wang Jianhui, Ning Xinghai, Kong Desheng
College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China.
Sci Adv. 2022 Apr;8(13):eabl5511. doi: 10.1126/sciadv.abl5511. Epub 2022 Mar 30.
Intrinsically stretchable electronics represent an attractive platform for next-generation implantable devices by reducing the mechanical mismatch and the immune responses with biological tissues. Despite extensive efforts, soft implantable electronic devices often exhibit an obvious trade-off between electronic performances and mechanical deformability because of limitations of commonly used compliant electronic materials. Here, we introduce a scalable approach to create intrinsically stretchable and implantable electronic devices featuring the deployment of liquid metal components for ultrahigh stretchability up to 400% tensile strain and excellent durability against repetitive deformations. The device architecture further shows long-term stability under physiological conditions, conformal attachments to internal organs, and low interfacial impedance. Successful electrophysiological mapping on rapidly beating hearts demonstrates the potential of intrinsically stretchable electronics for widespread applications in health monitoring, disease diagnosis, and medical therapies.
本征可拉伸电子器件通过减少与生物组织的机械不匹配和免疫反应,为下一代可植入设备提供了一个有吸引力的平台。尽管付出了巨大努力,但由于常用柔性电子材料的局限性,软质可植入电子设备在电子性能和机械可变形性之间往往存在明显的权衡。在此,我们介绍一种可扩展的方法来制造本征可拉伸且可植入的电子设备,该方法采用液态金属组件实现高达400%拉伸应变的超高拉伸性以及对重复变形的出色耐久性。该器件架构在生理条件下进一步显示出长期稳定性、与内部器官的贴合性以及低界面阻抗。在快速跳动的心脏上成功进行电生理测绘证明了本征可拉伸电子器件在健康监测、疾病诊断和医学治疗中广泛应用的潜力。