Kang Seongkweon, Hong Doojin, Das Biswajit, Lee Sang-Min, Park Ji-Sang, Lee Yoonmyung, Lee Sungjoo
Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
Adv Mater. 2025 Jul;37(26):e2406850. doi: 10.1002/adma.202406850. Epub 2024 Jul 16.
True random number generators (TRNGs), which create cryptographically secure random bitstreams, hold great promise in addressing security concerns regarding hardware, communication, and authentication in the Internet of Things (IoT) realm. Recently, TRNGs based on nanoscale materials have gained considerable attention for avoiding conventional and predictable hardware circuitry designs that can be vulnerable to machine learning (ML) attacks. In this article, a low-power and low-cost TRNG developed by exploiting stochastic ferroelectric polarization switching in 2D ferroelectric CuInPS (CIPS)-based capacitive structures, is reported. The stochasticity arises from the probabilistic switching of independent electrical dipoles. The TRNG exhibits enhanced stochastic variability with near-ideal entropy, uniformity, uniqueness, Hamming distance, and independence from autocorrelation variations. Its unclonability is systematically examined using device-to-device variations. The generated cryptographic bitstreams pass the National Institute of Standards and Technology (NIST) randomness tests. This nanoscale CIPS-based TRNG is circuit-integrable and exhibits potential for hardware security in edge devices with advanced data encryption.
真正的随机数发生器(TRNG)能够生成具有密码学安全性的随机比特流,在解决物联网(IoT)领域中有关硬件、通信和认证的安全问题方面具有巨大潜力。最近,基于纳米级材料的TRNG因避免了可能易受机器学习(ML)攻击的传统且可预测的硬件电路设计而备受关注。在本文中,报道了一种通过利用基于二维铁电CuInPS(CIPS)的电容结构中的随机铁电极化切换而开发的低功耗、低成本TRNG。随机性源于独立电偶极的概率性切换。该TRNG具有增强的随机变异性,具有近乎理想的熵、均匀性、独特性、汉明距离,且与自相关变化无关。使用设备间变化对其不可克隆性进行了系统研究。生成的加密比特流通过了美国国家标准与技术研究院(NIST)的随机性测试。这种基于纳米级CIPS的TRNG可进行电路集成,并在具有高级数据加密功能的边缘设备中展现出硬件安全潜力。