He Chengmao, Liang Kun, Deng Xuyan, Liang Xiongyu, Zhang Jiasen, Yu Li
State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
School of Physics, Peking University, Beijing, 100871, China.
Nano Lett. 2024 Jul 31;24(30):9377-9384. doi: 10.1021/acs.nanolett.4c02484. Epub 2024 Jul 16.
Nonreciprocal quantum devices, allowing different transmission efficiencies of light-matter polaritons along opposite directions, are key technologies for modern photonics, yet their miniaturization and fine manipulation remain an open challenge. Here, we report on magnetochiral plexcitons dressed with geometric-time double asymmetry in compact nonreciprocal hybrid metamaterials, leading to triple plexcitonic nonreciprocity with flexible controllability. A general magnetically dressed plexcitonic Born-Kuhn model is developed to reveal the hybrid optical nature and dynamic energy evolution of magnetochiral plexcitons, demonstrating a plexcitonic nonreciprocal mechanism originating from the strong coupling among photon, electron, and spin degrees of freedom. Moreover, we introduce the temperature-controlled knob/switch for magnetochiral plexcitons, achieving precise magnetochiral control and nonreciprocal transmission in a given system. We expect this mechanism and approach to open up a new route for the integration and fine control of on-chip nonreciprocal quantum devices.
非互易量子器件能够使光与物质极化激元沿相反方向具有不同的传输效率,是现代光子学的关键技术,但其小型化和精确操控仍是一个有待解决的挑战。在此,我们报道了在紧凑的非互易混合超材料中具有几何时间双重不对称性的磁手性复合激子,从而实现了具有灵活可控性的三重复合激子非互易性。我们开发了一个通用的磁修饰复合激子玻恩 - 库恩模型,以揭示磁手性复合激子的混合光学性质和动态能量演化,证明了一种源于光子、电子和自旋自由度之间强耦合的复合激子非互易机制。此外,我们为磁手性复合激子引入了温度控制旋钮/开关,在给定系统中实现了精确的磁手性控制和非互易传输。我们期望这种机制和方法能够为片上非互易量子器件的集成和精确控制开辟一条新途径。