Suppr超能文献

对使用人工智能方法进行癌症预测的非侵入性技术近期创新的深度分析。

A depth analysis of recent innovations in non-invasive techniques using artificial intelligence approach for cancer prediction.

作者信息

Rai Hari Mohan, Yoo Joon, Razaque Abdul

机构信息

School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam-Si, 13120, Gyeonggi-Do, Republic of Korea.

Department of Cyber Security, Information Processing and Storage, Satbayev University, Almaty, Kazakhstan.

出版信息

Med Biol Eng Comput. 2024 Dec;62(12):3555-3580. doi: 10.1007/s11517-024-03158-0. Epub 2024 Jul 16.

Abstract

The fight against cancer, a relentless global health crisis, emphasizes the urgency for efficient and automated early detection methods. To address this critical need, this review assesses recent advances in non-invasive cancer prediction techniques, comparing conventional machine learning (CML) and deep neural networks (DNNs). Focusing on these seven major cancers, we analyze 310 publications spanning the years 2018 to 2024, focusing on detection accuracy as the key metric to identify the most effective predictive models, highlighting critical gaps in current methodologies, and suggesting directions for future research. We further delved into factors like datasets, features, and modalities to gain a comprehensive understanding of each approach's performance. Separate review tables for each cancer type and approach facilitated comparisons between top performers (accuracy exceeding 99%) and low performers (65.83 to 85.8%). Our exploration of public databases and commonly used classifiers revealed that optimal combinations of features, datasets, and models can achieve up to 100% accuracy for both CML and DNN. However, significant variations in accuracy (up to 35%) were observed, particularly when optimization was lacking. Notably, colorectal cancer exhibited the lowest accuracy (DNN 69%, CML 65.83%). A five-point comparative analysis (best/worst models, performance gap, average accuracy, and research trends) revealed that while DNN research is gaining momentum, CML approaches remain competitive, even outperforming DNN in some cases. This study presents an in-depth comparative analysis of CML and DNN techniques for cancer detection. This knowledge can inform future research directions and contribute to the development of increasingly accurate and reliable cancer detection tools.

摘要

对抗癌症这场无情的全球健康危机,凸显了高效且自动化的早期检测方法的紧迫性。为满足这一关键需求,本综述评估了非侵入性癌症预测技术的最新进展,比较了传统机器学习(CML)和深度神经网络(DNN)。聚焦于这七种主要癌症,我们分析了2018年至2024年间的310篇出版物,将检测准确率作为确定最有效预测模型的关键指标,突出当前方法中的关键差距,并为未来研究指明方向。我们进一步深入研究了数据集、特征和模态等因素,以全面了解每种方法的性能。针对每种癌症类型和方法的单独综述表便于比较表现最佳者(准确率超过99%)和表现较差者(65.83%至85.8%)。我们对公共数据库和常用分类器的探索表明,特征、数据集和模型的最佳组合可使CML和DNN的准确率均达到100%。然而,观察到准确率存在显著差异(高达35%),尤其是在缺乏优化的情况下。值得注意的是,结直肠癌的准确率最低(DNN为69%,CML为65.83%)。一项五点比较分析(最佳/最差模型、性能差距、平均准确率和研究趋势)表明,虽然DNN研究势头正劲,但CML方法仍具竞争力,在某些情况下甚至优于DNN。本研究对用于癌症检测的CML和DNN技术进行了深入的比较分析。这些知识可为未来的研究方向提供参考,并有助于开发越来越准确可靠的癌症检测工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验