Suppr超能文献

使用机器和现代深度学习模型预测和诊断乳腺癌。

Prediction and Diagnosis of Breast Cancer Using Machine and Modern Deep Learning Models.

机构信息

Symbiosis College of Nursing (SCON), Symbiosis International Deemed University (SIDU), Pune- 412115, India.

Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University) (SIDU), Pune, 412115, India.

出版信息

Asian Pac J Cancer Prev. 2024 Mar 1;25(3):1077-1085. doi: 10.31557/APJCP.2024.25.3.1077.

Abstract

UNLABELLED

Background &Objective: Carcinoma of the breast is one of the major issues causing death in women, especially in developing countries. Timely prediction, detection, diagnosis, and efficient therapies have become critical to reducing death rates. Increased use of artificial intelligence, machine, and deep learning techniques create more accurate and trustworthy models for predicting and detecting breast cancer. This study aims to examine the effectiveness of several machine and modern deep learning models for prediction and diagnosis of breast cancer.

METHODS

This research compares traditional machine learning classification methods to innovative techniques that use deep learning models. Established usual classification models such as k-Nearest Neighbors (kNN), Gradient Boosting, Support Vector Machine (SVM), Neural Network, CN2 rule inducer, Naive Bayes, Stochastic Gradient Descent (SGD), and Tree, and deep learning models such as Neural Decision Forest and Multilayer Perceptron used. The investigation, which was carried out using the Orange and Python tools, evaluates their diagnostic effectiveness in breast cancer detection. The evaluation uses UCI's publicly accessible Wisconsin Diagnostic Data Set, enabling transparency and accessibility in the study approach.

RESULT

The mean radius ranges from 6.981 to 28.110, while the mean texture runs from 9.71 to 39.28 in malignant and benign cases. Gradient boosting and CN2 rule inducer classifiers outperform SVM in accuracy and sensitivity, whereas SVM has the lowest accuracy and sensitivity at 88%. The CN2 rule inducer classifier achieves the greatest ROC curve score for benign and malignant breast cancer datasets, with an AUC score of 0.98%. MLP displays distinguish positive and negative classes, with a higher AUC-ROC of 0.9959. with accuracy of 96.49%, precision of 96.57%, recall of 96.49%, and an F1-Score of 96.50%.

CONCLUSION

Among the most commonly used classifier models, CN2 rule and  GB performed better than other models. However, MLP from deep learning produced the greatest overall performance.

摘要

目的

乳腺癌是导致女性死亡的主要原因之一,尤其是在发展中国家。及时的预测、检测、诊断和有效的治疗已成为降低死亡率的关键。人工智能、机器和深度学习技术的广泛应用为乳腺癌的预测和检测创建了更准确、更可信的模型。本研究旨在评估几种机器学习和现代深度学习模型在乳腺癌预测和诊断中的效果。

方法

本研究将传统机器学习分类方法与使用深度学习模型的创新技术进行比较。采用了常用的分类模型,如 k 近邻(kNN)、梯度提升、支持向量机(SVM)、神经网络、CN2 规则诱导器、朴素贝叶斯、随机梯度下降(SGD)和决策树,以及深度学习模型,如神经决策森林和多层感知机。该研究使用 Orange 和 Python 工具进行,评估它们在乳腺癌检测中的诊断效果。该评估使用了 UCI 公开的威斯康星州诊断数据集,使研究方法具有透明度和可访问性。

结果

恶性和良性病例的平均半径范围分别为 6.981 至 28.110,平均纹理分别为 9.71 至 39.28。在准确性和敏感性方面,梯度提升和 CN2 规则诱导器分类器优于 SVM,而 SVM 的准确性和敏感性最低,为 88%。CN2 规则诱导器分类器对良性和恶性乳腺癌数据集的 ROC 曲线得分最高,AUC 评分为 0.98%。MLP 对阳性和阴性类别进行区分,AUC-ROC 更高,为 0.9959。准确率为 96.49%,精度为 96.57%,召回率为 96.49%,F1 得分为 96.50%。

结论

在最常用的分类器模型中,CN2 规则和梯度提升的性能优于其他模型。然而,深度学习的 MLP 产生了最佳的整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8af/11152379/b66fdce95136/APJCP-25-1077-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验