Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
J Phys Chem B. 2024 Jul 25;128(29):7102-7111. doi: 10.1021/acs.jpcb.4c02363. Epub 2024 Jul 16.
TAT rhodopsin binds Ca near the Schiff base region, which accompanies deprotonation of the Schiff base. This paper reports the Ca-free and Ca-bound structures of TAT rhodopsin by molecular dynamics (MD) simulation launched from AlphaFold structures. In the Ca-bound TAT rhodopsin, Ca is directly coordinated by eight oxygen atoms, four oxygens of the side chains of E54 and D227, and four oxygens of water molecules. E54 is not involved in the hydrogen-bonding network of the Ca-free TAT rhodopsin, while flipping motion of E54 allows Ca binding to TAT rhodopsin with deformation of helices observed by FTIR spectroscopy. The hydrogen-bonding network plays a crucial role in maintaining the Ca binding, as mutations of E54, Y55, R79, Y200, E220, and D227 abolished the binding. Only T82V exhibited the Ca binding like the wild type among the mutants in this study. The molecular mechanism of Ca binding is discussed based on the present computational and experimental analysis.
TAT 视蛋白在施夫碱区域附近结合 Ca,同时伴随着施夫碱的去质子化。本文通过从 AlphaFold 结构出发的分子动力学 (MD) 模拟,报告了 TAT 视蛋白的无 Ca 和有 Ca 结合结构。在有 Ca 结合的 TAT 视蛋白中,Ca 直接由八个氧原子配位,其中 E54 和 D227 的侧链的四个氧原子和四个水分子的氧原子。E54 不参与无 Ca 的 TAT 视蛋白的氢键网络,而 E54 的翻转运动允许 Ca 结合到 TAT 视蛋白中,同时观察到 FTIR 光谱中螺旋的变形。氢键网络在维持 Ca 结合中起着至关重要的作用,因为 E54、Y55、R79、Y200、E220 和 D227 的突变消除了结合。在本研究的突变体中,只有 T82V 表现出类似于野生型的 Ca 结合。基于目前的计算和实验分析,讨论了 Ca 结合的分子机制。