Suppr超能文献

钴掺杂二氧化铈敏化剂对金属氧化物纳米纤维的影响:用于高性能化学电阻传感器的增强表面反应性

Cobalt-Doped Ceria Sensitizer Effects on Metal Oxide Nanofibers: Heightened Surface Reactivity for High-Performing Chemiresistive Sensors.

作者信息

Baek Jong Won, Han Seunghee, Lee Sang Eun, Ahn Jaewan, Park Chungseong, Nam Jong Seok, Kim Yoon Hwa, Shin Euichul, Kim Minhyun, Jang Ji-Soo, Kim Jihan, Park Hee Jung, Kim Il-Doo

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

出版信息

ACS Nano. 2024 Jul 16;18(30):19568-80. doi: 10.1021/acsnano.4c03168.

Abstract

Chemiresistive gas sensors based on semiconducting metal oxides typically rely on noble metal catalysts to enhance their sensitivity and selectivity. However, noble metal catalysts have several drawbacks for practical utilization, including their high cost, their propensity for spontaneous agglomeration, and poisoning effects with certain types of gases. As such, in the interest of commercializing the chemiresistive gas sensor technology, we propose an alternative design for a noble-metal-free sensing material through the case study of Co-doped ceria (Co-CeO) catalysts embedded in a SnO matrix. In this investigation, we utilized electrospinning and subsequent calcination to prepare Co-CeO catalyst nanoparticles integrated with SnO nanofibers (NFs) with uniform particle distribution and particle size regulation down to the sub-2 nm regime. The resulting Co-CeO@SnO NFs exhibited superior gas sensing characteristics toward isoprene (CH) gas, a significant biomarker for monitoring the onset of various diseases through breath diagnostics. In particular, we identified that the Co-CeO catalysts, owing to the transition metal doping, facilitated the spillover of chemisorbed oxygen species to the SnO sensing body. This resulting in the sensor having a 27.4-fold higher response toward 5 ppm of CH (compared to pristine SnO), exceptionally high selectivity, and a low detection limit of 100 ppb. The sensor also exhibited high stability for prolonged response-recovery cycles, attesting to the strong anchoring of Co-CeO catalysts in the SnO matrix. Based on our findings, the transition metal-doped metal oxide catalysts, such as Co-CeO, demonstrate strong potential to completely replace noble metal catalysts, thereby advancing the development of the commercially viable chemiresistive gas sensors free from noble metals, capable of detecting target gases at sub-ppm levels.

摘要

基于半导体金属氧化物的化学电阻式气体传感器通常依靠贵金属催化剂来提高其灵敏度和选择性。然而,贵金属催化剂在实际应用中有几个缺点,包括成本高、容易自发团聚以及对某些类型气体的中毒效应。因此,为了使化学电阻式气体传感器技术商业化,我们通过对嵌入SnO基质的Co掺杂二氧化铈(Co-CeO)催化剂的案例研究,提出了一种无贵金属传感材料的替代设计。在这项研究中,我们利用静电纺丝和随后的煅烧来制备与SnO纳米纤维(NFs)集成的Co-CeO催化剂纳米颗粒,其颗粒分布均匀,粒径可调节至亚2纳米范围。所得的Co-CeO@SnO NFs对异戊二烯(CH)气体表现出优异的气敏特性,异戊二烯是一种重要的生物标志物,可通过呼吸诊断监测各种疾病的发作。特别是,我们发现由于过渡金属掺杂,Co-CeO催化剂促进了化学吸附氧物种向SnO传感体的溢出。这使得传感器对5 ppm的CH的响应比原始SnO高27.4倍,具有极高的选择性和100 ppb的低检测限。该传感器在长时间的响应-恢复循环中也表现出高稳定性,证明了Co-CeO催化剂在SnO基质中的强锚固作用。基于我们的发现,过渡金属掺杂的金属氧化物催化剂,如Co-CeO,显示出完全替代贵金属催化剂的强大潜力,从而推动了无贵金属的商业可行化学电阻式气体传感器的发展,该传感器能够检测亚ppm水平的目标气体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e4f/11295259/ac5d693c719f/nn4c03168_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验