Cho Yun-Haeng, Kim Dong-Su, Seo Jung Hwan, Chung Jae Han, Park Zion, Kwon Ki Chang, Ko Jae-Kwon, Ha Tae Won, Lee Jeong-O, Kim Gyu-Li, Ro Seong-Jun, Kim Hyojung, Lee Chil-Hyoung, Lee Kwangjae, Shim Young-Seok, Cho Donghwi
School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan, 31253, Republic of Korea.
National Center for Nano Process & Equipments, Energy & Nano Technology Group, Korea Institute of Industrial Technology (KITECH), Gwangju, 61012, Republic of Korea.
Adv Sci (Weinh). 2025 Jul;12(25):e2501293. doi: 10.1002/advs.202501293. Epub 2025 May 3.
AI-assisted electronic nose systems often emphasize sensitivity-driven datasets, overlooking the comprehensive analysis of gaseous chemical attributes critical for precise gas identification. Conventional fabrication methods generate inconsistent datasets and focus primarily on improving classification accuracy through deep learning, neglecting the fundamental role of sensor material design. This study addresses these challenges by developing a highly reliable sensor platform to standardize gas sensing for deep learning applications. Specifically, 1D SnO nanonetworks functionalized with Au and Pd nanocatalysts are fabricated via a systematic deposition process, enhancing gas diffusion and reaction kinetics. Stability improvements through controlled aging process reduce the coefficient of variation to below 5% across seven target gases: acetone, hydrogen, ethanol, carbon monoxide, propane, isoprene, and toluene. The platform exhibits exceptional deep learning performance, achieving over 99.5% classification accuracy using a residual network model, even in high-humidity environments (up to 80% relative humidity) and at parts-per-trillion detection limits. This study highlights the synergy between nanostructure engineering and AI, establishing a robust framework for next-generation bioinspired electronic nose systems with enhanced reliability and analytical capability.
人工智能辅助的电子鼻系统通常强调以灵敏度为驱动的数据集,而忽略了对精确气体识别至关重要的气态化学属性的综合分析。传统的制造方法会产生不一致的数据集,并且主要侧重于通过深度学习提高分类准确率,而忽视了传感器材料设计的基础作用。本研究通过开发一个高度可靠的传感器平台来解决这些挑战,以标准化用于深度学习应用的气体传感。具体而言,通过系统沉积工艺制备了用金和钯纳米催化剂功能化的一维二氧化锡纳米网络,增强了气体扩散和反应动力学。通过可控老化过程提高稳定性,将七种目标气体(丙酮、氢气、乙醇、一氧化碳、丙烷、异戊二烯和甲苯)的变异系数降低到5%以下。该平台展现出卓越的深度学习性能,即使在高湿度环境(相对湿度高达80%)和万亿分之一的检测限下,使用残差网络模型也能实现超过99.5%的分类准确率。本研究突出了纳米结构工程与人工智能之间的协同作用,为具有更高可靠性和分析能力的下一代仿生电子鼻系统建立了一个强大的框架。