Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2404164121. doi: 10.1073/pnas.2404164121. Epub 2024 Jul 16.
The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.
先进的神经调节技术的发展对于神经科学研究和神经工程应用至关重要。最近,基于光学的非遗传调节方法被积极研究,以高精度远程检测神经系统。在这里,我们表明,薄膜硅(Si)基二极管设备能够在调整光照后双向调节体外和体内的神经活动。当暴露于高功率和短脉冲光下时,Si 二极管会产生光热效应,引起神经元去极化并增强细胞内钙动力学。相反,Si 二极管上的低功率和长脉冲光会使神经元超极化并减少钙活动。此外,安装在活体小鼠大脑上的 Si 二极管薄膜可以在不同的照射条件下激活或抑制皮质活动。所提出的材料和器件策略为精确的神经调节揭示了一种创新的光电接口。