Windmüller Anna, Schaps Kristian, Zantis Frederik, Domgans Anna, Taklu Bereket Woldegbreal, Yang Tingting, Tsai Chih-Long, Schierholz Roland, Yu Shicheng, Kungl Hans, Tempel Hermann, Dunin-Borkowski Rafal E, Hüning Felix, Hwang Bing Joe, Eichel Rüdiger-A
Institute of Energy Technologies (IET-1: Fundamental Electrochemistry), Forschungszentrum Jülich, Jülich 52425, Germany.
Department of Chemical Engineering, Nano-electrochemistry Laboratory, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):39181-39194. doi: 10.1021/acsami.4c03729. Epub 2024 Jul 16.
Ga-doped LiLaZrO garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO through electrochemical tests in galvanostatic cells versus Li metal and complementary studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped LiLaZrO electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped LiLaZrOfor practical use.
镓掺杂的LiLaZrO石榴石固体电解质在氧化物型石榴石结构固体电解质中表现出最高的锂离子电导率,但对锂金属的不稳定性阻碍了它们的实际应用。此前有几个研究小组将这种不稳定性归因于共存相LiGaO与锂金属之间的直接化学反应。然而,目前仍缺乏对LiGaO在电化学电池中的作用及其电化学性质的了解。在此,我们通过在恒电流电池中与锂金属进行电化学测试以及通过共焦拉曼显微镜、基于粉末X射线衍射的定量相分析、能量色散X射线光谱、X射线光电子能谱和电子能量损失光谱进行补充研究,来探究LiGaO的电化学性质。结果表明LiGaO具有相当可观且令人惊讶的电化学活性,具有高可逆性。我们推导了一个三阶段反应机理,包括导致形成高电子导电产物的可逆电化学反应。这些结果对于在全固态锂金属电池应用中使用镓掺杂的LiLaZrO电解质具有重要意义,并提出了实现镓掺杂LiLaZrO实际应用所需的先进材料工程要求。