Jo Seong-Jun, Jeon Young Gyu, Kim Dong-Kyu, Hwang Sang Yeop, Lee Byeong-Heon, Kang Chea Yun, Lee Seung-Hwan, Lim Sung-Hwan, Kumar R Vasant, Han Yu-Jin, Kim Kwang-Bum, Kim Hyun-Kyung
Department of Battery Convergence Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, Republic of Korea.
Interdisciplinary Program in Advanced Functional Materials and Devices Development, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Heliyon. 2024 Aug 20;10(16):e36206. doi: 10.1016/j.heliyon.2024.e36206. eCollection 2024 Aug 30.
Garnet-type LiLaZrO (LLZO) Li-ion solid electrolytes are promising candidates for safe, next-generation solid-state batteries. In this study, we synthesize Ga-doped LLZO (Ga-LLZO) electrolytes using a microwave-assisted solvothermal method followed by low-temperature heat treatment. The nanostructured precursor (<50 nm) produced by the microwave-assisted solvothermal process has a high surface energy, facilitating the reaction for preparing garnet-type Ga-LLZO powders (<800 nm) within a short time (<5 h) at a low calcination temperature (<700 °C). Additionally, the calcined nanostructured Ga-LLZO powder can be sintered to produce a high-density pellet with minimized grain boundaries under moderate sintering conditions (temperature: 1150 °C, duration: 10 h). The optimal doping concentration was determined to be 0.4 mol% Ga, which resulted significantly increased the ionic conductivity (1.04 × 10 S cm at 25 °C) and stabilized the cycling performance over 1700 h at 0.4 mA cm. This approach demonstrates the potential to synthesize oxide-type solid electrolyte materials with improved properties for solid-state batteries.
石榴石型LiLaZrO(LLZO)锂离子固体电解质是安全的下一代固态电池的有前途的候选材料。在本研究中,我们采用微波辅助溶剂热法,然后进行低温热处理,合成了Ga掺杂的LLZO(Ga-LLZO)电解质。微波辅助溶剂热法制备的纳米结构前驱体(<50nm)具有高表面能,有利于在低温煅烧温度(<700°C)下短时间(<5h)内制备石榴石型Ga-LLZO粉末(<800nm)的反应。此外,煅烧后的纳米结构Ga-LLZO粉末可以在中等烧结条件(温度:1150°C,持续时间:10h)下烧结,以生产具有最小晶界的高密度颗粒。确定最佳掺杂浓度为0.4mol%Ga,这显著提高了离子电导率(25°C时为1.04×10 S cm),并在0.4mA cm下稳定了超过1700h的循环性能。这种方法展示了合成具有改进性能的氧化物型固体电解质材料用于固态电池的潜力。