Suppr超能文献

neoWONDER 方案:对新生儿全人群进行数据链接,以改善早产儿和患病婴儿的长期健康和福祉。

A protocol for neoWONDER: Neonatal whole population data linkage to improve long-term health and wellbeing of preterm and sick babies.

机构信息

School of Public Health, Imperial College London, London, United Kingdom.

Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.

出版信息

PLoS One. 2024 Jul 16;19(7):e0305113. doi: 10.1371/journal.pone.0305113. eCollection 2024.

Abstract

INTRODUCTION

Early-life medical and surgical interventions in babies born preterm and/or with surgical conditions influence later life health and educational outcomes. Obtaining long-term outcomes post-discharge to evaluate the impact of interventions is complex, expensive, and burdensome to families. Linkage of routinely collected data offers a feasible and cost-effective solution. The NeoWONDER research programme aims to describe the short and long-term health and educational outcomes for babies born preterm and/or with surgical conditions and evaluate the impact of neonatal care and interventions on later health and educational outcomes.

METHODS AND ANALYSIS

We will include babies who received care in neonatal units in England and Wales, born between 2007-2020 with a gestational age below 32 weeks (approximately 100,000), and/or born between 2012-2020 (all gestations) with any of six surgical conditions: necrotising enterocolitis, Hirschsprung's disease, gastroschisis, oesophageal atresia, congenital diaphragmatic hernia, and posterior urethral valves (approximately 8,000). A detailed list of surgical condition codes is shown in S3 File. We will obtain long-term health and education outcomes through linkage of the National Neonatal Research Database, which contains routine data for all babies admitted to NHS neonatal units, to other existing health and educational datasets. For England, these are: Hospital Episode Statistics, the Office for National Statistics, Mental Health Services Dataset, Paediatric Intensive Care Audit Network, National Pupil Database; and for Wales, the Secure Anonymised Information Linkage databank. Analysis will be undertaken on de-identified linked datasets. Outcomes of interest for health include mortality, hospital admissions, diagnoses indicative of neurodisability and/or chronic illness, health care utilisation; and for education are attainment (using national curriculum assessments), school absence and special educational needs status.

摘要

简介

早产儿和/或患有外科疾病的婴儿在生命早期接受的医疗和外科干预会影响其以后的健康和教育结果。在出院后获得长期结果以评估干预措施的影响是复杂、昂贵且给家庭带来负担的。常规收集数据的链接提供了一种可行且具有成本效益的解决方案。NeoWONDER 研究计划旨在描述早产儿和/或患有外科疾病的婴儿的短期和长期健康和教育结果,并评估新生儿护理和干预措施对以后健康和教育结果的影响。

方法和分析

我们将纳入在英格兰和威尔士的新生儿病房接受治疗的婴儿,他们出生于 2007-2020 年,胎龄低于 32 周(约 100,000 名),和/或出生于 2012-2020 年(所有胎龄),患有六种外科疾病之一:坏死性小肠结肠炎、先天性巨结肠、腹裂、食管闭锁、先天性膈疝和后尿道瓣膜(约 8,000 名)。外科疾病代码的详细列表显示在 S3 文件中。我们将通过链接包含 NHS 新生儿病房所有婴儿常规数据的国家新生儿研究数据库来获得长期健康和教育结果,以及其他现有的健康和教育数据集。对于英格兰,这些数据集是:医院入院统计数据库、国家统计局、精神卫生服务数据集、儿科重症监护审计网络、国家学生数据库;对于威尔士,是安全匿名信息链接数据库。分析将在去识别链接数据集上进行。健康相关的结果包括死亡率、住院、神经残疾和/或慢性疾病的诊断、医疗保健利用;教育相关的结果包括成绩(使用国家课程评估)、学校缺勤和特殊教育需求状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fb7/11251610/19a0c190cc8c/pone.0305113.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验