Choi Su Bin, Noh Taejoon, Jung Seung-Boo, Kim Jong-Woong
Department of Smart Fab Technology, Sungkyunkwan University, Suwon, 16419, South Korea.
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
Adv Sci (Weinh). 2024 Sep;11(35):e2405374. doi: 10.1002/advs.202405374. Epub 2024 Jul 16.
This study delves into the development of a novel 10 by 10 sensor array featuring 100 pressure sensor pixels, achieving remarkable sensitivity up to 888.79 kPa, through the innovative design of sensor structure. The critical challenge of strain sensitivity inherent is addressed in stretchable piezoresistive pressure sensors, a domain that has seen significant interest due to their potential for practical applications. This approach involves synthesizing and electrospinning polybutadiene-urethane (PBU), a reversible cross-linking polymer, subsequently coated with MXene nanosheets to create a conductive fabric. This fabrication technique strategically enhances sensor sensitivity by minimizing initial current values and incorporating semi-cylindrical electrodes with Ag nanowires (AgNWs) selectively coated for optimal conductivity. The application of a pre-strain method to electrode construction ensures strain immunity, preserving the sensor's electrical properties under expansion. The sensor array demonstrated remarkable sensitivity by consistently detecting even subtle airflow from an air gun in a wind sensing test, while a novel deep learning methodology significantly enhanced the long-term sensing accuracy of polymer-based stretchable mechanical sensors, marking a major advancement in sensor technology. This research presents a significant step forward in enhancing the reliability and performance of stretchable piezoresistive pressure sensors, offering a comprehensive solution to their current limitations.
本研究深入探讨了一种新型10×10传感器阵列的开发,该阵列具有100个压力传感器像素,通过创新的传感器结构设计,实现了高达888.79 kPa的显著灵敏度。可拉伸压阻式压力传感器解决了固有的应变灵敏度这一关键挑战,由于其实际应用潜力,该领域受到了广泛关注。这种方法包括合成和静电纺丝聚丁二烯 - 聚氨酯(PBU),一种可逆交联聚合物,随后涂覆MXene纳米片以形成导电织物。这种制造技术通过最小化初始电流值并结合选择性涂覆银纳米线(AgNWs)的半圆柱形电极以实现最佳导电性,从战略上提高了传感器的灵敏度。在电极构造中应用预应变方法可确保应变免疫,在膨胀状态下保持传感器的电学性能。在风感测试中,该传感器阵列通过持续检测来自气枪的细微气流展现出了卓越的灵敏度,同时一种新颖的深度学习方法显著提高了基于聚合物的可拉伸机械传感器的长期传感精度,标志着传感器技术的重大进步。这项研究在提高可拉伸压阻式压力传感器的可靠性和性能方面迈出了重要一步,为解决其当前局限性提供了全面的解决方案。