Suppr超能文献

直接使用稀疏替代梯度训练时间尖峰神经网络。

Directly training temporal Spiking Neural Network with sparse surrogate gradient.

机构信息

Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.

Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China.

出版信息

Neural Netw. 2024 Nov;179:106499. doi: 10.1016/j.neunet.2024.106499. Epub 2024 Jul 1.

Abstract

Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features. However, the spiking all-or-none nature has prevented direct training of SNNs for various applications. The surrogate gradient (SG) algorithm has recently enabled spiking neural networks to shine in neuromorphic hardware. However, introducing surrogate gradients has caused SNNs to lose their original sparsity, thus leading to the potential performance loss. In this paper, we first analyze the current problem of direct training using SGs and then propose Masked Surrogate Gradients (MSGs) to balance the effectiveness of training and the sparseness of the gradient, thereby improving the generalization ability of SNNs. Moreover, we introduce a temporally weighted output (TWO) method to decode the network output, reinforcing the importance of correct timesteps. Extensive experiments on diverse network structures and datasets show that training with MSG and TWO surpasses the SOTA technique.

摘要

基于大脑的尖峰神经网络(SNN)因其基于事件的计算和节能特性而受到广泛关注。然而,尖峰的全有或全无性质阻止了 SNN 直接用于各种应用的训练。最近,替代梯度(SG)算法使得 SNN 在神经形态硬件中大放异彩。然而,引入替代梯度导致 SNN 失去了原始的稀疏性,从而导致潜在的性能损失。在本文中,我们首先分析了当前使用 SG 进行直接训练的问题,然后提出了掩蔽替代梯度(MSG)来平衡训练的有效性和梯度的稀疏性,从而提高 SNN 的泛化能力。此外,我们引入了一种时间加权输出(TWO)方法来解码网络输出,增强了正确时间步的重要性。在各种网络结构和数据集上的广泛实验表明,使用 MSG 和 TWO 进行训练优于最先进的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验