文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

量化大语言模型幻觉在复杂适应性社会网络中传播的不确定性。

Quantifying the uncertainty of LLM hallucination spreading in complex adaptive social networks.

作者信息

Hao Guozhi, Wu Jun, Pan Qianqian, Morello Rosario

机构信息

Graduate School of Information, Production and Systems, Waseda University, Fukuoka, 808-0135, Japan.

Department of Information Engineering, Infrastructure and Sustainable Energy, University Mediterranea of Reggio Calabria, Via Graziella, Reggio Calabria, 89122, Italy.

出版信息

Sci Rep. 2024 Jul 16;14(1):16375. doi: 10.1038/s41598-024-66708-4.


DOI:10.1038/s41598-024-66708-4
PMID:39014013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11252443/
Abstract

Large language models (LLMs) are becoming a significant source of content generation in social networks, which is a typical complex adaptive system (CAS). However, due to their hallucinatory nature, LLMs produce false information that can spread through social networks, which will impact the stability of the whole society. The uncertainty of LLMs false information spread within social networks is attributable to the diversity of individual behaviors, intricate interconnectivity, and dynamic network structures. Quantifying the uncertainty of false information spread by LLMs in social networks is beneficial for preemptively devising strategies to defend against threats. To address these challenges, we propose an LLMs hallucination-aware dynamic modeling method via agent-based probability distributions, spread popularity and community affiliation, to quantify the uncertain spreading of LLMs hallucination in social networks. We set up the node attributes and behaviors in the model based on real-world data. For evaluation, we consider the spreaders, informed people, discerning and unwilling non-spreaders as indicators, and quantified the spreading under different LLMs task situations, such as QA, dialogue, and summarization, as well as LLMs versions. Furthermore, we conduct experiments using real-world LLM hallucination data combined with social network features to ensure the validity of the proposed quantifying scheme.

摘要

大语言模型(LLMs)正在成为社交网络中内容生成的一个重要来源,社交网络是一个典型的复杂自适应系统(CAS)。然而,由于其幻觉性质,大语言模型会产生可能在社交网络中传播的虚假信息,这将影响整个社会的稳定性。大语言模型虚假信息在社交网络内传播的不确定性归因于个体行为的多样性、错综复杂的相互关联性以及动态的网络结构。量化大语言模型在社交网络中传播虚假信息的不确定性,有利于预先制定抵御威胁的策略。为应对这些挑战,我们提出一种基于智能体概率分布、传播热度和社区归属的大语言模型幻觉感知动态建模方法,以量化大语言模型幻觉在社交网络中的不确定传播。我们基于现实世界数据设置模型中的节点属性和行为。为进行评估,我们将传播者、知情者、有辨别力且不愿意传播者作为指标,并量化了在不同大语言模型任务情境(如问答、对话和摘要)以及大语言模型版本下的传播情况。此外,我们结合社交网络特征使用现实世界的大语言模型幻觉数据进行实验,以确保所提出量化方案的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/b58f314d47be/41598_2024_66708_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/ff0312cc3272/41598_2024_66708_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/a50e8cbcc58b/41598_2024_66708_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/139c7219f542/41598_2024_66708_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/5051c8df66fb/41598_2024_66708_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/067444641898/41598_2024_66708_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/25c5e13bd885/41598_2024_66708_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/e0cdd5e31b9b/41598_2024_66708_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/5e60348ab0a8/41598_2024_66708_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/c07c6d46f3e1/41598_2024_66708_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/b58f314d47be/41598_2024_66708_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/ff0312cc3272/41598_2024_66708_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/a50e8cbcc58b/41598_2024_66708_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/139c7219f542/41598_2024_66708_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/5051c8df66fb/41598_2024_66708_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/067444641898/41598_2024_66708_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/25c5e13bd885/41598_2024_66708_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/e0cdd5e31b9b/41598_2024_66708_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/5e60348ab0a8/41598_2024_66708_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/c07c6d46f3e1/41598_2024_66708_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02b9/11252443/b58f314d47be/41598_2024_66708_Fig8_HTML.jpg

相似文献

[1]
Quantifying the uncertainty of LLM hallucination spreading in complex adaptive social networks.

Sci Rep. 2024-7-16

[2]
Large Language Models Can Enable Inductive Thematic Analysis of a Social Media Corpus in a Single Prompt: Human Validation Study.

JMIR Infodemiology. 2024-8-29

[3]
Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals.

J Med Internet Res. 2024-4-25

[4]
A Systematic Review of ChatGPT and Other Conversational Large Language Models in Healthcare.

medRxiv. 2024-4-27

[5]
Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study.

J Med Internet Res. 2024-6-14

[6]
Assessing the Alignment of Large Language Models With Human Values for Mental Health Integration: Cross-Sectional Study Using Schwartz's Theory of Basic Values.

JMIR Ment Health. 2024-4-9

[7]
Data Set and Benchmark (MedGPTEval) to Evaluate Responses From Large Language Models in Medicine: Evaluation Development and Validation.

JMIR Med Inform. 2024-6-28

[8]
Potential of Large Language Models in Health Care: Delphi Study.

J Med Internet Res. 2024-5-13

[9]
Implications of large language models such as ChatGPT for dental medicine.

J Esthet Restor Dent. 2023-10

[10]
The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.

JMIR Med Inform. 2024-5-10

引用本文的文献

[1]
Multi-model assurance analysis showing large language models are highly vulnerable to adversarial hallucination attacks during clinical decision support.

Commun Med (Lond). 2025-8-2

[2]
An intelligent guided troubleshooting method for aircraft based on HybirdRAG.

Sci Rep. 2025-5-22

本文引用的文献

[1]
A medical multimodal large language model for future pandemics.

NPJ Digit Med. 2023-12-2

[2]
Evaluation of the performance of GPT-3.5 and GPT-4 on the Polish Medical Final Examination.

Sci Rep. 2023-11-22

[3]
Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling.

Nat Med. 2020-7-9

[4]
Rumor spreading model considering rumor credibility, correlation and crowd classification based on personality.

Sci Rep. 2020-4-3

[5]
An overview of agent-based models in plant biology and ecology.

Ann Bot. 2020-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索