Suppr超能文献

大语言模型在医疗保健中的潜力:德尔菲研究。

Potential of Large Language Models in Health Care: Delphi Study.

机构信息

Bern University of Applied Sciences, Biel, Switzerland.

Harz University of Applied Sciences, Wernigerode, Germany.

出版信息

J Med Internet Res. 2024 May 13;26:e52399. doi: 10.2196/52399.

Abstract

BACKGROUND

A large language model (LLM) is a machine learning model inferred from text data that captures subtle patterns of language use in context. Modern LLMs are based on neural network architectures that incorporate transformer methods. They allow the model to relate words together through attention to multiple words in a text sequence. LLMs have been shown to be highly effective for a range of tasks in natural language processing (NLP), including classification and information extraction tasks and generative applications.

OBJECTIVE

The aim of this adapted Delphi study was to collect researchers' opinions on how LLMs might influence health care and on the strengths, weaknesses, opportunities, and threats of LLM use in health care.

METHODS

We invited researchers in the fields of health informatics, nursing informatics, and medical NLP to share their opinions on LLM use in health care. We started the first round with open questions based on our strengths, weaknesses, opportunities, and threats framework. In the second and third round, the participants scored these items.

RESULTS

The first, second, and third rounds had 28, 23, and 21 participants, respectively. Almost all participants (26/28, 93% in round 1 and 20/21, 95% in round 3) were affiliated with academic institutions. Agreement was reached on 103 items related to use cases, benefits, risks, reliability, adoption aspects, and the future of LLMs in health care. Participants offered several use cases, including supporting clinical tasks, documentation tasks, and medical research and education, and agreed that LLM-based systems will act as health assistants for patient education. The agreed-upon benefits included increased efficiency in data handling and extraction, improved automation of processes, improved quality of health care services and overall health outcomes, provision of personalized care, accelerated diagnosis and treatment processes, and improved interaction between patients and health care professionals. In total, 5 risks to health care in general were identified: cybersecurity breaches, the potential for patient misinformation, ethical concerns, the likelihood of biased decision-making, and the risk associated with inaccurate communication. Overconfidence in LLM-based systems was recognized as a risk to the medical profession. The 6 agreed-upon privacy risks included the use of unregulated cloud services that compromise data security, exposure of sensitive patient data, breaches of confidentiality, fraudulent use of information, vulnerabilities in data storage and communication, and inappropriate access or use of patient data.

CONCLUSIONS

Future research related to LLMs should not only focus on testing their possibilities for NLP-related tasks but also consider the workflows the models could contribute to and the requirements regarding quality, integration, and regulations needed for successful implementation in practice.

摘要

背景

大型语言模型(LLM)是一种从文本数据中推断出来的机器学习模型,它捕捉到了语言在上下文中的微妙使用模式。现代 LLM 基于神经网络架构,采用了转换器方法。它们允许模型通过关注文本序列中的多个单词来将单词联系在一起。LLM 已被证明在自然语言处理(NLP)的一系列任务中非常有效,包括分类和信息提取任务以及生成应用程序。

目的

这项适应性 Delphi 研究的目的是收集研究人员对 LLM 如何影响医疗保健的看法,以及 LLM 在医疗保健中的优势、劣势、机会和威胁。

方法

我们邀请了健康信息学、护理信息学和医学 NLP 领域的研究人员分享他们对 LLM 在医疗保健中的使用的看法。我们从我们的优势、劣势、机会和威胁框架开始第一轮的开放式问题。在第二轮和第三轮中,参与者对这些项目进行了评分。

结果

第一轮、第二轮和第三轮分别有 28、23 和 21 名参与者。几乎所有参与者(第一轮的 28 人中的 26 人,第三轮的 21 人中的 20 人)都隶属于学术机构。在与使用案例、益处、风险、可靠性、采用方面和 LLM 在医疗保健中的未来相关的 103 个项目上达成了一致意见。参与者提出了几种使用案例,包括支持临床任务、文档任务以及医学研究和教育,并同意基于 LLM 的系统将作为患者教育的健康助手。达成一致的益处包括提高数据处理和提取的效率、提高流程自动化程度、提高医疗保健服务和整体健康结果的质量、提供个性化护理、加速诊断和治疗过程以及改善患者与医疗保健专业人员之间的互动。总的来说,确定了一般医疗保健方面的 5 个风险:网络安全漏洞、潜在的患者信息错误、道德问题、决策偏见的可能性以及不准确沟通的风险。对基于 LLM 的系统的过度自信被认为是对医疗行业的一个风险。确定的 6 个隐私风险包括使用不受监管的云服务,从而危及数据安全性、暴露敏感患者数据、违反机密性、欺诈性使用信息、数据存储和通信中的漏洞以及不当访问或使用患者数据。

结论

未来与 LLM 相关的研究不仅应关注测试其在 NLP 相关任务中的可能性,还应考虑模型可以为工作流程做出贡献的要求,以及为成功在实践中实施所需的质量、集成和法规要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81ca/11130776/e58f67c9b643/jmir_v26i1e52399_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验