Yan Jinwei, Dalladay-Simpson Philip, Conway Lewis J, Gorelli Federico, Pickard Chris, Liu Xiao-Di, Gregoryanz Eugene
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
Sci Rep. 2024 Jul 16;14(1):16394. doi: 10.1038/s41598-024-66493-0.
Solid nitrogen exhibits a panoply of phenomena ranging from complex molecular crystalline configurations to polymerization and closing band gap at higher densities. Among the elemental molecular solids, nitrogen stands apart for having phases, which can only be stabilized following particular pressure-temperature pathways, indicative of metastability and kinetic barriers. Here, through the combination of Raman spectroscopy and dynamic compression techniques, we find that the appearance of the whole nitrogen phase diagram is determined by the P-T paths taken below 2 GPa. We reveal the existence of the path- and phase-dependent triple point between the - , - and - or - . We further show that the - towards - path below the triple point, that evades ( )- , results in the formation of - , which in turn becomes a dominant phase. We then demonstrate, that the - through ( )- above the triple point path leads to the formation of - and the "well-established" phase diagram. An additional pathway, which by-passes the rotationally inhibited modifications ( )- , via rapid compression is found to produce - at higher temperatures. We argue that the pathway and phase sensitive triple point and the compression rate dependent phase formation challenge our understanding of this archetypal dense molecular solid.
固态氮展现出一系列现象,从复杂的分子晶体构型到聚合反应,以及在更高密度下的带隙闭合。在元素分子固体中,氮因其具有仅能通过特定压力 - 温度路径才能稳定存在的相而与众不同,这表明其具有亚稳性和动力学势垒。在此,通过拉曼光谱和动态压缩技术的结合,我们发现整个氮相图的呈现取决于2吉帕以下所采用的压力 - 温度路径。我们揭示了在α - ,β - 和γ - 或δ - 之间存在路径和相依赖的三相点。我们进一步表明,在三相点以下从α - 到β - 的路径避开了ε(H)- N,导致形成了ε - ,而ε - 进而成为主导相。然后我们证明,在三相点以上从α - 经过ε(H)- N到β - 的路径导致形成了β - 和“已确立的”相图。通过快速压缩绕过旋转受阻变体ε(H)- N的另一条路径被发现可在更高温度下产生δ - 。我们认为,路径和相敏感的三相点以及压缩速率依赖的相形成挑战了我们对这种典型致密分子固体的理解。