School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, UK.
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
Nature. 2016 Jan 7;529(7584):63-7. doi: 10.1038/nature16164.
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
大约 80 年前,人们曾预测,在足够的压力下,氢气(H2)中的 H-H 键将会断裂,形成一种新的原子态、金属态的固态氢。在过去的 30 年里,实现这一预测状态一直是高压研究的主要目标之一。在这里,我们使用原位高压拉曼光谱,提供了证据表明,在 300 开尔文时,压力大于 325 吉帕斯卡,H2 和氘化氢(HD)转变为一种新的相——相 V。这种新的氢相的特征是振动拉曼活性显著减弱,基本振动频率对压力的依赖性发生变化,以及低频激发的部分丧失。我们在 H2 和 HD 的压力-温度空间中绘制出建议的相 V 的区域,直到 388 吉帕斯卡和 300 开尔文,以及 465 吉帕斯卡和 350 开尔文;我们在氘(D2)中没有观察到相 V。然而,我们表明,在 310 吉帕斯卡和 300 开尔文以上,D2 向相 IV'的转变发生。这些值代表了已知的最大各向同性压力变化,因此 H2 和 D2 相之间的最大可能压力差,这意味着 D2 相 V 的出现必须在压力高于 380 吉帕斯卡的情况下发生。这些实验数据提供了在 325 吉帕斯卡以上的高密度氢的物理性质的一瞥,并限制了新相存在的压力和温度条件。我们推测,相 V 可能是 80 年前预测的非分子(原子和金属)氢状态的前体。