Suppr超能文献

两种疾病相关 ADAR1 突变体的结构影响:分子动力学研究。

Structural impacts of two disease-linked ADAR1 mutants: a molecular dynamics study.

机构信息

Institute of Precision Medicine, National Sun Yat-sen University, No. 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan.

Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan.

出版信息

J Comput Aided Mol Des. 2024 Jul 17;38(1):25. doi: 10.1007/s10822-024-00565-1.

Abstract

Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.

摘要

腺苷脱氨酶作用于 RNA(ADARs)是关键的 RNA 编辑酶,负责将双链 RNA(dsRNA)中的腺苷转化为肌苷。ADAR1 编辑活性的失调,通常源于基因突变,与干扰素水平升高和自身炎症性疾病的发作有关。然而,由于缺乏实验确定的 ADAR1 脱氨酶结构域结构,对这种失调的分子基础的理解受到了阻碍。在这项计算研究中,我们利用同源建模和 AlphaFold2 构建了野生型和两种致病变体 R892H 和 Y1112F 的 ADAR1 脱氨酶结构域的结构模型,以破译结构对降低的脱氨酶活性的影响。我们的研究结果阐明了 ADAR1 脱氨酶结构域和 dsRNA 之间结构互补在酶-底物识别中的关键作用。也就是说,E1008 和 K1120 的相对位置必须保持一致,以便它们可以分别插入底物 dsRNA 的小沟和大沟中,从而促进腺苷翻转并容纳在围绕 E912 的腔中。研究中研究的两种氨基酸替换,位于正位点的 R892H 和位于变构位点的 Y1112F,改变了 K1120 的位置,最终阻碍了底物 RNA 的结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验