Huete Samuel G, Leyva Alejandro, Kornobis Etienne, Cokelaer Thomas, Lechat Pierre, Monot Marc, Duran Rosario, Picardeau Mathieu, Benaroudj Nadia
Biology of Spirochetes, Institut Pasteur, CNRS UMR 6047, Université Paris Cité, Paris, France.
Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
mBio. 2025 Jul 23:e0064525. doi: 10.1128/mbio.00645-25.
Dioxygen (O) is vital for aerobic life, but its utilization leads to the inevitable production of superoxide, a toxic oxidant. The prevailing theory of oxygen toxicity postulates that superoxide-scavenging enzymes (SOSEs), such as superoxide dismutases (SODs), are crucial for most aerobes and play a key role in the virulence of pathogens. However, our knowledge of superoxide adaptation primarily stems from the study of SOSE-encoding bacteria. Here, we investigated the evolution of a naturally SOSE-deficient pathogen ( spp.) and its alternative mechanisms to combat superoxide stress. We demonstrated that SOD was ancestral in the genus but lost by pathogenic species, and heterologous expression of a SOD in this pathogen did not improve superoxide tolerance. In , inheritable increased expression of a genetic locus, including a MFS transporter, mediated a long-lasting adaptation to superoxide, independently of any permanent genetic modification. Using a multi-omics approach, we identified a -encoded isopropylmalate synthase, the enzyme catalyzing the first step of leucine biosynthesis, as the most upregulated factor by superoxide. Interestingly, LeuA2 lacks the canonical domain for feedback inhibition by leucine and is the only upregulated factor of leucine biosynthesis, suggesting a moonlighting activity for LeuA2 in the adaptation to superoxide. Moreover, the cysteine biosynthesis pathway was significantly upregulated in response to superoxide, and we demonstrated the importance of sulfur metabolism in adaptation to superoxide. This study revisits our conventional understanding of the oxygen toxicity theory and proposes a new model of superoxide adaptation through redox-based metabolic rewiring in SOSE-deficient aerobic bacteria.IMPORTANCESuperoxide is a toxic reactive oxygen species produced as an inevitable byproduct during oxygen respiration. It is therefore assumed that aerobic bacteria require superoxide scavenging enzymes (SOSEs), such as superoxide dismutases. Recent studies estimate that around 10% of all living organisms lack SOSEs. However, we ignore how these organisms survive superoxide stress when confronted with oxygen. Here, using , a naturally SOSE-deficient aerobic pathogen, we address the evolutionary path and defense mechanisms leading to the adaptation to superoxide in the absence of any SOSE. We demonstrate that a SOD was ancestral in this genus but was lost with the emergence of pathogenic species. In addition, we show that pathogenic induce metabolic pathways to fight superoxide, such as cysteine biosynthesis and isopropylmalate synthase. Thus, our study reveals that redox-based metabolic reprogramming may compensate for the loss of SOSEs in pathogenic bacteria.
二氧(O₂)对需氧生物至关重要,但其利用会不可避免地产生超氧化物,一种有毒的氧化剂。目前关于氧毒性的理论假定,超氧化物清除酶(SOSEs),如超氧化物歧化酶(SODs),对大多数需氧生物至关重要,并且在病原体的毒力中起关键作用。然而,我们对超氧化物适应性的了解主要源于对编码SOSE的细菌的研究。在此,我们研究了一种天然缺乏SOSE的病原体([具体物种])的进化及其对抗超氧化物应激的替代机制。我们证明SOD在[属名]中是祖先型的,但在致病物种中丢失了,并且在这种病原体中异源表达SOD并不能提高其对超氧化物的耐受性。在[具体物种]中,一个包括MFS转运蛋白的遗传位点的可遗传的表达增加介导了对超氧化物的长期适应,而不依赖于任何永久性的基因修饰。使用多组学方法,我们鉴定出一种由[具体物种]编码的异丙基苹果酸合酶,该酶催化亮氨酸生物合成的第一步,是超氧化物上调最多的因子。有趣的是,LeuA2缺乏亮氨酸反馈抑制的典型结构域,并且是亮氨酸生物合成中唯一上调的因子,这表明LeuA2在适应超氧化物方面具有兼职活性。此外,半胱氨酸生物合成途径在对超氧化物的反应中显著上调,并且我们证明了硫代谢在适应超氧化物中的重要性。这项研究重新审视了我们对氧毒性理论的传统理解,并提出了一种通过在缺乏SOSE的需氧细菌中基于氧化还原的代谢重排来适应超氧化物的新模型。
重要性
超氧化物是氧呼吸过程中不可避免产生的有毒活性氧物种。因此,人们认为需氧细菌需要超氧化物清除酶(SOSEs),如超氧化物歧化酶。最近的研究估计,所有生物中约有10%缺乏SOSEs。然而,当面对氧气时,我们忽略了这些生物如何在超氧化物应激下存活。在此,我们使用一种天然缺乏SOSE的需氧病原体[具体物种],来探讨在没有任何SOSE的情况下导致适应超氧化物的进化路径和防御机制。我们证明在这个属中SOD是祖先型的,但随着致病物种的出现而丢失。此外,我们表明致病的[具体物种]诱导代谢途径来对抗超氧化物,如半胱氨酸生物合成和异丙基苹果酸合酶。因此,我们的研究揭示了基于氧化还原的代谢重编程可能补偿致病细菌中SOSEs的缺失。