Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 DongJiaoMinXiang Street, DongCheng District, Beijing, 100730, China.
Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.
Neuroradiology. 2024 Oct;66(10):1781-1791. doi: 10.1007/s00234-024-03429-5. Epub 2024 Jul 17.
To evaluate nnU-net's performance in automatically segmenting and volumetrically measuring ocular adnexal lymphoma (OAL) on multi-sequence MRI.
We collected T1-weighted (T1), T2-weighted and T1-weighted contrast-enhanced images with/without fat saturation (T2_FS/T2_nFS, T1c_FS/T1c_nFS) of OAL from four institutions. Two radiologists manually annotated lesions as the ground truth using ITK-SNAP. A deep learning framework, nnU-net, was developed and trained using two models. Model 1 was trained on T1, T2, and T1c, while Model 2 was trained exclusively on T1 and T2. A 5-fold cross-validation was utilized in the training process. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), sensitivity, and positive prediction value (PPV). Volumetric assessment was performed using Bland-Altman plots and Lin's concordance correlation coefficient (CCC).
A total of 147 patients from one center were selected as training set and 33 patients from three centers were regarded as test set. For both Model 1 and 2, nnU-net demonstrated outstanding segmentation performance on T2_FS with DSC of 0.80-0.82, PPV of 84.5-86.1%, and sensitivity of 77.6-81.2%, respectively. Model 2 failed to detect 19 cases of T1c, whereas the DSC, PPV, and sensitivity for T1_nFS were 0.59, 91.2%, and 51.4%, respectively. Bland-Altman plots revealed minor tumor volume differences with 0.22-1.24 cm between nnU-net prediction and ground truth on T2_FS. The CCC were 0.96 and 0.93 in Model 1 and 2 for T2_FS images, respectively.
The nnU-net offered excellent performance in automated segmentation and volumetric assessment in MRI of OAL, particularly on T2_FS images.
评估 nnU-net 在多序列 MRI 上自动分割和体积测量眼部附属器淋巴瘤(OAL)的性能。
我们从四个机构收集了 OAL 的 T1 加权(T1)、T2 加权和 T1 加权对比增强图像(带/不带脂肪饱和的 T2_FS/T2_nFS、T1c_FS/T1c_nFS)。两位放射科医生使用 ITK-SNAP 使用手动标注病变作为ground truth。使用 nnU-net 开发了一个深度学习框架,并使用两个模型进行了训练。模型 1 在 T1、T2 和 T1c 上进行训练,而模型 2 仅在 T1 和 T2 上进行训练。在训练过程中使用了 5 折交叉验证。使用 Dice 相似系数(DSC)、灵敏度和阳性预测值(PPV)评估分割性能。使用 Bland-Altman 图和 Lin 的一致性相关系数(CCC)进行体积评估。
从一个中心选择了 147 名患者作为训练集,从三个中心选择了 33 名患者作为测试集。对于模型 1 和模型 2,nnU-net 在 T2_FS 上表现出出色的分割性能,DSC 为 0.80-0.82,PPV 为 84.5-86.1%,灵敏度为 77.6-81.2%。模型 2 未能检测到 19 例 T1c,而 T1_nFS 的 DSC、PPV 和灵敏度分别为 0.59、91.2%和 51.4%。Bland-Altman 图显示,nnU-net 在 T2_FS 上的预测值与 ground truth 之间的肿瘤体积差异较小,为 0.22-1.24cm。模型 1 和模型 2 中 T2_FS 图像的 CCC 分别为 0.96 和 0.93。
nnU-net 在 OAL 的 MRI 自动分割和体积评估中表现出色,尤其是在 T2_FS 图像上。