Suppr超能文献

基于 nnU-Net 的多参数 MRI 对小儿髓母细胞瘤肿瘤亚区的分割:一项多中心研究。

nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study.

机构信息

From the Department of Radiology, University of Wisconsin-Madison, Madison, Wis (R.B., M.I., I.Y.); University Hospitals, Cleveland, Ohio (D.M., A.N.); Departments of Biomedical Engineering (M.L., S.G., S.I.) and Neurosciences (P.D.), Case Western Reserve University, Cleveland, Ohio; Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (B.T.); Division of Hematology, Oncology & Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio (R.S.); Department of Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, Calif (A.M.); Department of Pathology, Children's Hospital Los Angeles, Los Angeles, Calif (A.J.); Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (P.d.B.); William S. Middleton Memorial Veterans Affairs (VA) Healthcare, Madison, Wis (P.T.); and Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, 750 Highland Ave, Madison, WI 53726 (P.T.).

出版信息

Radiol Artif Intell. 2024 Sep;6(5):e230115. doi: 10.1148/ryai.230115.

Abstract

Purpose To evaluate nnU-Net-based segmentation models for automated delineation of medulloblastoma tumors on multi-institutional MRI scans. Materials and Methods This retrospective study included 78 pediatric patients (52 male, 26 female), with ages ranging from 2 to 18 years, with medulloblastomas, from three different sites (28 from hospital A, 18 from hospital B, and 32 from hospital C), who had data available from three clinical MRI protocols (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery). The scans were retrospectively collected from the year 2000 until May 2019. Reference standard annotations of the tumor habitat, including enhancing tumor, edema, and cystic core plus nonenhancing tumor subcompartments, were performed by two experienced neuroradiologists. Preprocessing included registration to age-appropriate atlases, skull stripping, bias correction, and intensity matching. The two models were trained as follows: the transfer learning nnU-Net model was pretrained on an adult glioma cohort ( = 484) and fine-tuned on medulloblastoma studies using Models Genesis and the direct deep learning nnU-Net model was trained directly on the medulloblastoma datasets, across fivefold cross-validation. Model robustness was evaluated on the three datasets when using different combinations of training and test sets, with data from two sites at a time used for training and data from the third site used for testing. Results Analysis on the three test sites yielded Dice scores of 0.81, 0.86, and 0.86 and 0.80, 0.86, and 0.85 for tumor habitat; 0.68, 0.84, and 0.77 and 0.67, 0.83, and 0.76 for enhancing tumor; 0.56, 0.71, and 0.69 and 0.56, 0.71, and 0.70 for edema; and 0.32, 0.48, and 0.43 and 0.29, 0.44, and 0.41 for cystic core plus nonenhancing tumor for the transfer learning and direct nnU-Net models, respectively. The models were largely robust to site-specific variations. Conclusion nnU-Net segmentation models hold promise for accurate, robust automated delineation of medulloblastoma tumor subcompartments, potentially leading to more effective radiation therapy planning in pediatric medulloblastoma. Pediatrics, MR Imaging, Segmentation, Transfer Learning, Medulloblastoma, nnU-Net, MRI © RSNA, 2024 See also the commentary by Rudie and Correia de Verdier in this issue.

摘要

目的 评估基于 nnU-Net 的分割模型在多机构 MRI 扫描上自动勾画髓母细胞瘤肿瘤的性能。

材料与方法 本回顾性研究纳入了 78 例年龄 2~18 岁的髓母细胞瘤患儿(52 例男性,26 例女性),肿瘤来源于 3 个不同部位(A 医院 28 例,B 医院 18 例,C 医院 32 例),分别来自 3 个临床 MRI 协议(钆增强 T1 加权、T2 加权和液体衰减反转恢复)。扫描数据从 2000 年至 2019 年 5 月间回顾性采集。两位有经验的神经放射科医生对肿瘤病灶、包括强化肿瘤、水肿和囊性核心加非强化肿瘤亚区的勾画进行了参考标准标注。预处理包括配准到适合年龄的图谱、颅骨剥离、偏置校正和强度匹配。这两种模型的训练方式如下:基于 nnU-Net 的迁移学习模型首先在成人胶质瘤队列(n = 484)上进行预训练,然后在髓母细胞瘤研究中使用 Models Genesis 进行微调;基于 nnU-Net 的直接深度学习模型直接在髓母细胞瘤数据集上进行训练,采用五重交叉验证。使用不同的训练集和测试集组合对模型进行了稳健性评估,每次使用两个地点的数据进行训练,使用第三个地点的数据进行测试。

结果 在对 3 个测试站点的分析中,基于 nnU-Net 的迁移学习模型和直接深度学习模型分别得到了 0.81、0.86 和 0.86 及 0.80、0.86 和 0.85 的肿瘤病灶 Dice 评分,0.68、0.84 和 0.77 及 0.67、0.83 和 0.76 的强化肿瘤 Dice 评分,0.56、0.71 和 0.69 及 0.56、0.71 和 0.70 的水肿 Dice 评分,以及 0.32、0.48 和 0.43 及 0.29、0.44 和 0.41 的囊性核心加非强化肿瘤 Dice 评分。这两种模型对特定站点的变化具有较大的稳健性。

结论 nnU-Net 分割模型有望实现髓母细胞瘤肿瘤亚区的精确、稳健自动勾画,可能会为儿科髓母细胞瘤的放疗计划制定带来更有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddc4/11427926/bd0094a94ecc/ryai.230115.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验