Suppr超能文献

假设检验和阴性设计的样本量考虑。

Hypothesis testing and sample size considerations for the test-negative design.

机构信息

Gilead Sciences, Inc, Foster City, CA, USA.

Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.

出版信息

BMC Med Res Methodol. 2024 Jul 16;24(1):151. doi: 10.1186/s12874-024-02277-4.

Abstract

The test-negative design (TND) is an observational study design to evaluate vaccine effectiveness (VE) that enrolls individuals receiving diagnostic testing for a target disease as part of routine care. VE is estimated as one minus the adjusted odds ratio of testing positive versus negative comparing vaccinated and unvaccinated patients. Although the TND is related to case-control studies, it is distinct in that the ratio of test-positive cases to test-negative controls is not typically pre-specified. For both types of studies, sparse cells are common when vaccines are highly effective. We consider the implications of these features on power for the TND. We use simulation studies to explore three hypothesis-testing procedures and associated sample size calculations for case-control and TND studies. These tests, all based on a simple logistic regression model, are a standard Wald test, a continuity-corrected Wald test, and a score test. The Wald test performs poorly in both case-control and TND when VE is high because the number of vaccinated test-positive cases can be low or zero. Continuity corrections help to stabilize the variance but induce bias. We observe superior performance with the score test as the variance is pooled under the null hypothesis of no group differences. We recommend using a score-based approach to design and analyze both case-control and TND. We propose a modification to the TND score sample size to account for additional variability in the ratio of controls over cases. This work enhances our understanding of the data generating mechanism in a test-negative design (TND) and how it is distinct from that of a case-control study due to its passive recruitment of controls.

摘要

病例对照设计和测试阴性设计的比较

对疫苗效力评估的影响

测试阴性设计(TND)是一种观察性研究设计,用于评估疫苗效力(VE),它将接受目标疾病诊断测试的个体纳入常规护理中。VE 是通过比较接种疫苗和未接种疫苗的患者的阳性与阴性检测的调整优势比来估计的。虽然 TND 与病例对照研究有关,但它是不同的,因为阳性病例与阴性对照的比例通常不是预先指定的。对于这两种类型的研究,当疫苗非常有效时,稀疏细胞很常见。我们考虑了这些特征对 TND 功效的影响。我们使用模拟研究来探讨病例对照和 TND 研究的三种假设检验程序和相关的样本量计算。这些检验都是基于简单的逻辑回归模型,分别是标准 Wald 检验、连续性校正 Wald 检验和 score 检验。当 VE 较高时,Wald 检验在病例对照和 TND 中表现不佳,因为接种疫苗的阳性病例数量可能较低或为零。连续性校正有助于稳定方差,但会产生偏差。我们观察到 score 检验具有更好的性能,因为在没有组间差异的零假设下,方差是被汇总的。我们建议使用基于 score 的方法来设计和分析病例对照和 TND。我们提出了一种对 TND 得分样本量的修改,以考虑到对照组与病例组比例的额外变异性。这项工作增强了我们对测试阴性设计(TND)中数据生成机制的理解,以及由于其对对照组的被动招募,它与病例对照研究的不同之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/11251325/2f8509a7e946/12874_2024_2277_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验