Suppr超能文献

中低收入国家痴呆风险预测(10/66 研究):对现有模型的独立外部验证。

Prediction of dementia risk in low-income and middle-income countries (the 10/66 Study): an independent external validation of existing models.

机构信息

Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, Nottingham University, Nottingham, UK.

Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.

出版信息

Lancet Glob Health. 2020 Apr;8(4):e524-e535. doi: 10.1016/S2214-109X(20)30062-0.

Abstract

BACKGROUND

To date, dementia prediction models have been exclusively developed and tested in high-income countries (HICs). However, most people with dementia live in low-income and middle-income countries (LMICs), where dementia risk prediction research is almost non-existent and the ability of current models to predict dementia is unknown. This study investigated whether dementia prediction models developed in HICs are applicable to LMICs.

METHODS

Data were from the 10/66 Study. Individuals aged 65 years or older and without dementia at baseline were selected from China, Cuba, the Dominican Republic, Mexico, Peru, Puerto Rico, and Venezuela. Dementia incidence was assessed over 3-5 years, with diagnosis according to the 10/66 Study diagnostic algorithm. Discrimination and calibration were tested for five models: the Cardiovascular Risk Factors, Aging and Dementia risk score (CAIDE); the Study on Aging, Cognition and Dementia (AgeCoDe) model; the Australian National University Alzheimer's Disease Risk Index (ANU-ADRI); the Brief Dementia Screening Indicator (BDSI); and the Rotterdam Study Basic Dementia Risk Model (BDRM). Models were tested with use of Cox regression. The discriminative accuracy of each model was assessed using Harrell's concordance (c)-statistic, with a value of 0·70 or higher considered to indicate acceptable discriminative ability. Calibration (model fit) was assessed statistically using the Grønnesby and Borgan test.

FINDINGS

11 143 individuals without baseline dementia and with available follow-up data were included in the analysis. During follow-up (mean 3·8 years [SD 1·3]), 1069 people progressed to dementia across all sites (incidence rate 24·9 cases per 1000 person-years). Performance of the models varied. Across countries, the discriminative ability of the CAIDE (0·52≤c≤0·63) and AgeCoDe (0·57≤c≤0·74) models was poor. By contrast, the ANU-ADRI (0·66≤c≤0·78), BDSI (0·62≤c≤0·78), and BDRM (0·66≤c≤0·78) models showed similar levels of discriminative ability to those of the development cohorts. All models showed good calibration, especially at low and intermediate levels of predicted risk. The models validated best in Peru and poorest in the Dominican Republic and China.

INTERPRETATION

Not all dementia prediction models developed in HICs can be simply extrapolated to LMICs. Further work defining what number and which combination of risk variables works best for predicting risk of dementia in LMICs is needed. However, models that transport well could be used immediately for dementia prevention research and targeted risk reduction in LMICs.

FUNDING

National Institute for Health Research, Wellcome Trust, WHO, US Alzheimer's Association, and European Research Council.

摘要

背景

迄今为止,痴呆症预测模型仅在高收入国家(HICs)中进行了开发和测试。然而,大多数痴呆症患者生活在中低收入国家(LMICs),这些国家几乎没有进行痴呆症风险预测研究,而且目前的模型预测痴呆症的能力也未知。本研究旨在调查 HICs 开发的痴呆症预测模型是否适用于 LMICs。

方法

数据来自 10/66 研究。从中国、古巴、多米尼加共和国、墨西哥、秘鲁、波多黎各和委内瑞拉中选取基线时无痴呆症且年龄在 65 岁或以上的人群。在 3-5 年内评估痴呆症的发病情况,根据 10/66 研究的诊断算法进行诊断。使用 Cox 回归对五个模型(心血管风险因素、衰老和痴呆风险评分(CAIDE);衰老、认知和痴呆研究(AgeCoDe)模型;澳大利亚国立大学阿尔茨海默病风险指数(ANU-ADRI);简要痴呆筛查指标(BDSI);和鹿特丹研究基本痴呆风险模型(BDRM))进行了判别和校准检验。使用 Harrell 的一致性(c)-统计量评估每个模型的判别准确性,c 值为 0.70 或更高表明具有可接受的判别能力。使用 Grønnesby 和 Borgan 检验进行统计学评估以确定模型拟合度(校准)。

结果

共纳入了 11143 名无基线痴呆症且有随访数据的人群。在随访期间(平均 3.8 年[标准差 1.3]),所有地点的 1069 人发展为痴呆症(发病率为每 1000 人年 24.9 例)。模型的性能存在差异。在各国中,CAIDE(0.52≤c≤0.63)和 AgeCoDe(0.57≤c≤0.74)模型的判别能力较差。相比之下,ANU-ADRI(0.66≤c≤0.78)、BDSI(0.62≤c≤0.78)和 BDRM(0.66≤c≤0.78)模型的判别能力与开发队列相似。所有模型的校准效果都很好,尤其是在预测风险的低和中水平时。模型在秘鲁的验证效果最好,在多米尼加共和国和中国的验证效果最差。

结论

并非所有在 HICs 开发的痴呆症预测模型都可以简单地外推到 LMICs。还需要进一步研究确定哪些风险变量的数量和组合最适合预测 LMICs 痴呆症的风险。然而,表现良好的模型可以立即用于 LMICs 的痴呆症预防研究和有针对性的风险降低。

资助

国家卫生研究院、惠康信托基金会、世界卫生组织、美国阿尔茨海默病协会和欧洲研究理事会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf7e/7090906/7230741d0673/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验