Suppr超能文献

翅膀变形提高了在飞行笼中飞行的蓝瓶蝇的前飞空气动力性能。

Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.

机构信息

Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA.

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

J R Soc Interface. 2024 Jul;21(216):20240076. doi: 10.1098/rsif.2024.0076. Epub 2024 Jul 17.

Abstract

Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.

摘要

昆虫翅膀是具有复杂时空变形模式的柔性结构。现有的翅膀变形研究强调了翅膀变形在增强空气动力学性能方面的不可或缺的作用。在这里,我们研究了蓝瓶蝇在磁飞行磨中的前向飞行;我们使用高速录像和无标记表面重建技术来量化翅膀表面的变形,并使用计算流体动力学来研究对空气动力、功率和效率的影响。结果表明,苍蝇的翅膀在翅膀根部附近呈现出明显的弯度,并沿翅膀跨度扭曲,这是主要关于翅关节弯曲线的偏转的耦合效应。在产生大部分推力的上冲程中,当翅膀旋前时,这种偏转更为显著。与变形的翅膀相比,未变形的翅膀产生了 59-98%的推力和 54-87%的推力效率(即推力与功率的比值)。翅膀扭曲使压力中心向近侧和后向移动,可能提高了空气动力学效率。

相似文献

1
Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
J R Soc Interface. 2024 Jul;21(216):20240076. doi: 10.1098/rsif.2024.0076. Epub 2024 Jul 17.
2
3
Alcids-like flapping wing for exploring the role of wing folding in underwater locomotion.
J R Soc Interface. 2025 Apr;22(225):20240830. doi: 10.1098/rsif.2024.0830. Epub 2025 Apr 30.
4
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
PLoS One. 2013;8(1):e53060. doi: 10.1371/journal.pone.0053060. Epub 2013 Jan 16.
6
Wing extension-flexion coupled aeroelastic effects improve avian gliding performance.
J R Soc Interface. 2025 May;22(226):20240753. doi: 10.1098/rsif.2024.0753. Epub 2025 May 7.
7
A chemo-mechanical constitutive model for muscle activation in bat wing skins.
J R Soc Interface. 2024 Jul;21(216):20230593. doi: 10.1098/rsif.2023.0593. Epub 2024 Jul 10.
8
Acrobatics at the insect scale: A durable, precise, and agile micro-aerial robot.
Sci Robot. 2025 Jan 15;10(98):eadp4256. doi: 10.1126/scirobotics.adp4256.
9
The impact of dragonfly wing deformations on aerodynamic performance during forward flight.
Bioinspir Biomim. 2020 Feb 7;15(2):026005. doi: 10.1088/1748-3190/ab597e.
10
Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.
J R Soc Interface. 2013 Jun 5;10(85):20130312. doi: 10.1098/rsif.2013.0312. Print 2013 Aug 6.

引用本文的文献

1
Characterization of Wing Kinematics by Decoupling Joint Movement in the Pigeon.
Biomimetics (Basel). 2024 Sep 15;9(9):555. doi: 10.3390/biomimetics9090555.

本文引用的文献

1
Wing Kinematics and Unsteady Aerodynamics of a Hummingbird Pure Yawing Maneuver.
Biomimetics (Basel). 2022 Aug 19;7(3):115. doi: 10.3390/biomimetics7030115.
2
State-space aerodynamic model reveals high force control authority and predictability in flapping flight.
J R Soc Interface. 2021 Aug;18(181):20210222. doi: 10.1098/rsif.2021.0222. Epub 2021 Aug 4.
3
The Geometry and Mechanics of Insect Wing Deformations in Flight: A Modelling Approach.
Insects. 2020 Jul 17;11(7):446. doi: 10.3390/insects11070446.
5
Speed control and force-vectoring of bluebottle flies in a magnetically levitated flight mill.
J Exp Biol. 2019 Feb 19;222(Pt 4):jeb187211. doi: 10.1242/jeb.187211.
6
Chordwise wing flexibility may passively stabilize hovering insects.
J R Soc Interface. 2018 Oct 10;15(147):20180409. doi: 10.1098/rsif.2018.0409.
8
Controlling roll perturbations in fruit flies.
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0075.
9
Body saccades of Drosophila consist of stereotyped banked turns.
J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.
10
Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
J R Soc Interface. 2014 Dec 6;11(101):20140933. doi: 10.1098/rsif.2014.0933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验