Suppr超能文献

翼弦向的柔韧性可能会被动稳定悬停的昆虫。

Chordwise wing flexibility may passively stabilize hovering insects.

机构信息

Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA.

Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA

出版信息

J R Soc Interface. 2018 Oct 10;15(147):20180409. doi: 10.1098/rsif.2018.0409.

Abstract

Insect wings are flexible, and the dynamically deforming wing shape influences the resulting aerodynamics and power consumption. However, the influence of wing flexibility on the flight dynamics of insects is unknown. Most stability studies in the literature consider rigid wings and conclude that the hover equilibrium condition is unstable. The rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. Here, we show that a flapping wing flyer with flexible wings exhibits stable hover equilibria. The free-flight insect flight dynamics are simulated at the fruit fly scale in the longitudinal plane. The chordwise wing flexibility is modelled as a linear beam. The two-dimensional Navier-Stokes equations are solved in a tight fluid-structure integration scheme. For a range of wing flexibilities similar to live insects, all eigenvalues of the system matrix about the hover equilibrium have negative real parts. Flexible wings appear to stabilize the unstable mode by passively deforming their wing shape in the presence of perturbations, generating significantly more horizontal velocity damping and pitch rate damping. These results suggest that insects may passively stabilize their hover flight via wing flexibility, which can inform designs of synthetic flapping wing robots.

摘要

昆虫的翅膀具有柔韧性,动态变形的翅膀形状会影响到产生的空气动力学和功耗。然而,翅膀柔韧性对昆虫飞行动力学的影响尚不清楚。文献中的大多数稳定性研究都考虑了刚性翅膀,并得出悬停平衡条件不稳定的结论。刚性翅膀由于对水平速度扰动的俯仰敏感性而具有不稳定的振荡模式。在这里,我们表明具有柔性翅膀的扑翼飞行器可以表现出稳定的悬停平衡。在纵平面上以果蝇的尺度模拟自由飞行昆虫的飞行动力学。将翼的弦向柔韧性建模为线性梁。在紧密的流固耦合方案中求解二维纳维-斯托克斯方程。对于与活体昆虫相似的一系列翼柔韧性,系统矩阵关于悬停平衡的所有特征值都具有负实部。柔性翅膀在存在扰动时通过被动变形其翅膀形状来稳定不稳定模式,从而产生更大的水平速度阻尼和俯仰速率阻尼。这些结果表明,昆虫可能通过翅膀柔韧性来被动稳定悬停飞行,这可以为合成扑翼机器人的设计提供信息。

相似文献

1
Chordwise wing flexibility may passively stabilize hovering insects.
J R Soc Interface. 2018 Oct 10;15(147):20180409. doi: 10.1098/rsif.2018.0409.
2
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bioinspir Biomim. 2017 Jun 15;12(4):046004. doi: 10.1088/1748-3190/aa7085.
3
Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
Bioinspir Biomim. 2015 May 6;10(3):036007. doi: 10.1088/1748-3190/10/3/036007.
4
Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
J R Soc Interface. 2014 Dec 6;11(101):20140933. doi: 10.1098/rsif.2014.0933.
6
A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
J R Soc Interface. 2019 Jun 28;16(155):20190118. doi: 10.1098/rsif.2019.0118. Epub 2019 Jun 19.
7
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
J R Soc Interface. 2013 Jun 12;10(85):20130361. doi: 10.1098/rsif.2013.0361. Print 2013 Aug 6.
8
The aerodynamics of insect flight.
J Exp Biol. 2003 Dec;206(Pt 23):4191-208. doi: 10.1242/jeb.00663.
9
Optimal pitching axis location of flapping wings for efficient hovering flight.
Bioinspir Biomim. 2017 Sep 1;12(5):056001. doi: 10.1088/1748-3190/aa7795.
10
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Bioinspir Biomim. 2016 Jul 8;11(4):046007. doi: 10.1088/1748-3190/11/4/046007.

引用本文的文献

1
Passive mechanisms in flying insects and applications in bio-inspired flapping-wing micro air vehicles.
Proc Biol Sci. 2025 Jul;292(2050):20251015. doi: 10.1098/rspb.2025.1015. Epub 2025 Jul 2.
2
Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
J R Soc Interface. 2024 Jul;21(216):20240076. doi: 10.1098/rsif.2024.0076. Epub 2024 Jul 17.
3
Power Benefits of High-Altitude Flapping Wing Flight at the Monarch Butterfly Scale.
Biomimetics (Basel). 2023 Aug 8;8(4):352. doi: 10.3390/biomimetics8040352.
4
Passive dynamics regulates aperiodic transitions in flapping wing systems.
PNAS Nexus. 2023 Mar 22;2(4):pgad086. doi: 10.1093/pnasnexus/pgad086. eCollection 2023 Apr.
5
Beneficial wake-capture effect for forward propulsion with a restrained wing-pitch motion of a butterfly.
R Soc Open Sci. 2021 Aug 25;8(8):202172. doi: 10.1098/rsos.202172. eCollection 2021 Aug.
6
Wing Design in Flies: Properties and Aerodynamic Function.
Insects. 2020 Jul 23;11(8):466. doi: 10.3390/insects11080466.

本文引用的文献

1
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bioinspir Biomim. 2017 Jun 15;12(4):046004. doi: 10.1088/1748-3190/aa7085.
2
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150712. doi: 10.1098/rspa.2015.0712.
3
Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
Bioinspir Biomim. 2015 May 6;10(3):036007. doi: 10.1088/1748-3190/10/3/036007.
4
The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.
Bioinspir Biomim. 2015 Jan 5;10(1):016002. doi: 10.1088/1748-3190/10/1/016002.
5
Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering.
Bioinspir Biomim. 2014 Sep;9(3):036019. doi: 10.1088/1748-3182/9/3/036019. Epub 2014 Aug 27.
6
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
J R Soc Interface. 2013 Jun 12;10(85):20130361. doi: 10.1098/rsif.2013.0361. Print 2013 Aug 6.
7
Nonlinear flight dynamics and stability of hovering model insects.
J R Soc Interface. 2013 May 22;10(85):20130269. doi: 10.1098/rsif.2013.0269. Print 2013 Aug 6.
8
Wing flexibility enhances load-lifting capacity in bumblebees.
Proc Biol Sci. 2013 Mar 27;280(1759):20130531. doi: 10.1098/rspb.2013.0531. Print 2013 May 22.
9
Floquet stability analysis of the longitudinal dynamics of two hovering model insects.
J R Soc Interface. 2012 Sep 7;9(74):2033-46. doi: 10.1098/rsif.2012.0072. Epub 2012 Apr 4.
10
The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106. doi: 10.1242/jeb.062760.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验