Suppr超能文献

悬停时昆虫尺度扑翼的瞬时升力和形状变形分析模型。

Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.

作者信息

Kang Chang-kwon, Shyy Wei

机构信息

Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA

Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

出版信息

J R Soc Interface. 2014 Dec 6;11(101):20140933. doi: 10.1098/rsif.2014.0933.

Abstract

In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke.

摘要

在对昆虫灵活扑动翅膀的分析中,空气动力学结果取决于结构动力学与非定常流体物理学的综合作用。由于翅膀形状以及由此产生的有效攻角事先未知,预测空气动力学性能具有挑战性。在此,我们表明基于带有莫里森方程的线性梁方程,可建立一个用于悬停的空气动力学/结构动力学耦合模型,以同时考虑附加质量和空气动力学阻尼效应。升力强烈依赖于与翅膀变形相关的被动俯仰所导致的瞬时攻角。我们表明,在一个更为简化的框架中可以预测瞬时翅膀变形和升力。此外,我们的分析表明,所产生的翅膀运动学可以通过与加速度相关的力和空气动力学阻尼力之间的相互作用来解释。有趣的是,虽然这两种力共同作用产生高攻角,从而在冲程中部附近产生高升力,但在冲程末端它们相互抵消以进行相位控制。

相似文献

1
Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
J R Soc Interface. 2014 Dec 6;11(101):20140933. doi: 10.1098/rsif.2014.0933.
2
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
J R Soc Interface. 2013 Jun 12;10(85):20130361. doi: 10.1098/rsif.2013.0361. Print 2013 Aug 6.
3
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bioinspir Biomim. 2017 Jun 15;12(4):046004. doi: 10.1088/1748-3190/aa7085.
4
A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
J R Soc Interface. 2019 Jun 28;16(155):20190118. doi: 10.1098/rsif.2019.0118. Epub 2019 Jun 19.
5
Aerodynamic effects of flexibility in flapping wings.
J R Soc Interface. 2010 Mar 6;7(44):485-97. doi: 10.1098/rsif.2009.0200. Epub 2009 Aug 19.
7
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Proc Biol Sci. 2012 Feb 22;279(1729):722-31. doi: 10.1098/rspb.2011.1023. Epub 2011 Aug 10.
8
Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
Bioinspir Biomim. 2015 May 6;10(3):036007. doi: 10.1088/1748-3190/10/3/036007.
9
Chordwise wing flexibility may passively stabilize hovering insects.
J R Soc Interface. 2018 Oct 10;15(147):20180409. doi: 10.1098/rsif.2018.0409.
10
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Bioinspir Biomim. 2016 Jul 8;11(4):046007. doi: 10.1088/1748-3190/11/4/046007.

引用本文的文献

2
Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
J R Soc Interface. 2024 Jul;21(216):20240076. doi: 10.1098/rsif.2024.0076. Epub 2024 Jul 17.
3
The self-oscillation paradox in the flight motor of .
J R Soc Interface. 2023 Nov;20(208):20230421. doi: 10.1098/rsif.2023.0421. Epub 2023 Nov 15.
4
Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0725.
5
A CFD-informed quasi-steady model of flapping wing aerodynamics.
J Fluid Mech. 2015 Nov;783:323-343. doi: 10.1017/jfm.2015.537.
6
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150712. doi: 10.1098/rspa.2015.0712.

本文引用的文献

1
Bending rules for animal propulsion.
Nat Commun. 2014;5:3293. doi: 10.1038/ncomms4293.
2
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
J R Soc Interface. 2013 Jun 12;10(85):20130361. doi: 10.1098/rsif.2013.0361. Print 2013 Aug 6.
3
An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.
J R Soc Interface. 2013 Jan 9;10(80):20120940. doi: 10.1098/rsif.2012.0940. Print 2013 Mar 6.
4
Elastic deformation and energy loss of flapping fly wings.
J Exp Biol. 2011 Sep 1;214(Pt 17):2949-61. doi: 10.1242/jeb.045351.
5
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Proc Biol Sci. 2012 Feb 22;279(1729):722-31. doi: 10.1098/rspb.2011.1023. Epub 2011 Aug 10.
6
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):5964-9. doi: 10.1073/pnas.1017910108. Epub 2011 Mar 28.
7
How wing compliance drives the efficiency of self-propelled flapping flyers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):015303. doi: 10.1103/PhysRevE.82.015303. Epub 2010 Jul 19.
9
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Science. 2009 Sep 18;325(5947):1549-52. doi: 10.1126/science.1175928.
10
Aerodynamic effects of flexibility in flapping wings.
J R Soc Interface. 2010 Mar 6;7(44):485-97. doi: 10.1098/rsif.2009.0200. Epub 2009 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验