Paul-Orecchio Austin G, Stockton Lucas, Barichello Neel, Petersen Andrew, Dolocan Andrei, Wang Yixian, Mitlin David, Mullins C Buddie
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):39341-39348. doi: 10.1021/acsami.4c06385. Epub 2024 Jul 17.
Lithium metal is regarded as the "holy grail" of lithium-ion battery anodes due to its exceptionally high theoretical capacity (3800 mAh g) and lowest possible electrochemical potential (-3.04 V vs Li/Li); however, lithium suffers from the dendritic formation that leads to parasitic reactions and cell failure. In this work, we stabilize fast-charging lithium metal plating/stripping with dual-function alloying -nitrate additives (: Ag, Bi, Ga, In, and Zn). First, lithium metal reduces , forming lithiophilic alloys for dense Li nucleation. Additionally, nitrates form ionically conductive and mechanically stable LiN and LiNO, enhancing Li-ion diffusion through the passivation layer. Notably, Zn-protected cells demonstrate electrochemically stable Li||Li cycling for 750+ cycles (2.0 mA cm) and 140 cycles (10.0 mA cm). Moreover, Zn-protected Li||Lithium Iron Phosphate full-cells achieve 134 mAh g (89.2% capacity retention) after 400 cycles (C/2). This work investigates a promising solution to stabilize lithium metal plating/stripping for fast-charging lithium metal batteries.
锂金属因其极高的理论容量(3800 mAh g)和尽可能低的电化学势(相对于Li/Li为-3.04 V)而被视为锂离子电池负极的“圣杯”;然而,锂会形成枝晶,导致寄生反应和电池失效。在这项工作中,我们使用双功能合金化硝酸盐添加剂(如Ag、Bi、Ga、In和Zn)来稳定快速充电的锂金属电镀/剥离。首先,锂金属还原 ,形成亲锂合金以实现致密的锂成核。此外,硝酸盐形成离子导电且机械稳定的LiN和LiNO,增强锂离子通过钝化层的扩散。值得注意的是,锌保护的电池在2.0 mA cm² 下展示了750多次循环以及在10.0 mA cm² 下展示了140次循环的电化学稳定的Li||Li循环。此外,锌保护的Li||磷酸铁锂全电池在400次循环(C/2)后实现了134 mAh g(容量保持率89.2%)。这项工作研究了一种有前景的解决方案,以稳定快速充电锂金属电池的锂金属电镀/剥离。