Rashid Amirul Aminur, Mansor Muhammad Syahir, Hashim Nur Awanis, Moharir Sona R, Abdul Manaf Norhuda
Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.
Environ Sci Pollut Res Int. 2025 Jul;32(32):19355-19371. doi: 10.1007/s11356-024-34382-8. Epub 2024 Jul 17.
Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potential of MXene as a performance enhancer in lauric acid (LA), which functions as a base PCM. The addition of graphene nanoplatelet (GNP) into the LA-MXene composite is prepared to comprehend and evaluate the benefits and detriments of adding carbon-based nanomaterial into the PCM via a two-step homogenizing method. A similar weight percentage of MXene and GNP at 0.75 was used for composite synthesis. The study found that the enthalpy of LA-MXene is comparable to LA at 169.87 J/kg and greater than LA-MXene/GNP, which has 137.53 J/kg. Regarding thermal storage performance, LA-MXene exhibited outstanding performance compared to LA-MXene/GNP in terms of enthalpy efficiency (λ) and relative enthalpy efficiency (η), achieving 95.4% and 96.1%, respectively. This is supported by the XPS spectra, which show that the crosslinking structure acted as a barrier, reinforcing the material and preventing further thermal degradation. This has resulted in robust and denser shells that significantly improved light absorption, enhancing both the photothermal conversion and thermal energy storage efficiency of LA/MXene. The present study reveals that LA-MXene is a promising and optimal candidate for the feasibility and reliability of TES in solar renewable energy applications. It was observed that the incorporation of exclusive MXene may effectively address the limitations of LA as a conventional PCM and surpass the traditional role of GNP. This study offers valuable insights into the superior performance of MXene alone, eliminating the need for doping with various nanomaterials and thereby reducing the complexity in synthesizing the PCM.
太阳能储热(TES)是一项杰出的创新技术,有助于太阳能技术在夜间和阴天仍能发挥作用。使用相变材料(PCM)的TES是实现清洁和可再生能源转型的前沿解决方案。本研究揭示了MXene作为月桂酸(LA,用作基础PCM)性能增强剂的独特潜力。通过两步均质化方法,在LA-MXene复合材料中添加石墨烯纳米片(GNP),以理解和评估向PCM中添加碳基纳米材料的利弊。在复合材料合成中,使用了相同重量百分比(均为0.75)的MXene和GNP。研究发现,LA-MXene的焓与LA相当,为169.87J/kg,大于LA-MXene/GNP的137.53J/kg。在储热性能方面,LA-MXene在焓效率(λ)和相对焓效率(η)方面比LA-MXene/GNP表现更出色,分别达到了95.4%和96.1%。XPS光谱证实了这一点,其表明交联结构起到了屏障作用,增强了材料性能并防止进一步热降解。这导致形成了坚固且致密的壳层,显著提高了光吸收,增强了LA/MXene的光热转换和热能存储效率。本研究表明,LA-MXene在太阳能可再生能源应用中的TES可行性和可靠性方面是一个有前景的最佳候选材料。据观察,单独加入独特的MXene可有效解决LA作为传统PCM的局限性,并超越GNP的传统作用。本研究为MXene的卓越性能提供了有价值的见解,无需掺杂各种纳米材料,从而降低了PCM合成的复杂性。