Suppr超能文献

mRNA 疫苗犹豫:通过网络叙事传播错误信息。

mRNA Vaccine Hesitancy: Spreading Misinformation Through Online Narratives.

机构信息

Strategic Communication, Quinnipiac University, Hamden, CT, USA.

Communication, Radford University, Radford, VA, USA.

出版信息

J Health Commun. 2024 Aug 2;29(8):538-547. doi: 10.1080/10810730.2024.2379954. Epub 2024 Jul 17.

Abstract

This research examined the themes that emerge from online discussions of the COVID-19 vaccines to assist health communicators and officials in combating misinformation in health-related discussions. Using framing theory and the diffusion of innovation framework, this study presents findings from a semantic network analysis of 3842 tweets collected during the first week of February 2022. The authors calculated betweenness and page rank centrality scores for Twitter users participating in the online dialogue and identified 36 semantic themes. Findings revealed that the most influential dialogue participants were retired health and medical professionals, data analysts, journalists, online advocates, and politicians. The frames identified in the study contained several misinformation narratives about the COVID-19 vaccines. The authors discuss the implications of these findings for health officials and communicators as well as the theoretical implications of the diffusion of misinformation and framing as a tool to reiterate untruths.

摘要

本研究考察了关于 COVID-19 疫苗的在线讨论中出现的主题,以帮助卫生传播者和官员在与健康相关的讨论中对抗错误信息。本研究使用框架理论和创新扩散框架,展示了对 2022 年 2 月第一周收集的 3842 条推文进行语义网络分析的结果。作者为参与在线对话的 Twitter 用户计算了中间性和网页排名中心度得分,并确定了 36 个语义主题。研究结果表明,最有影响力的对话参与者是退休的健康和医疗专业人员、数据分析师、记者、在线倡导者和政治家。研究中确定的框架包含了一些关于 COVID-19 疫苗的错误信息叙述。作者讨论了这些发现对卫生官员和传播者的意义,以及错误信息扩散和框架作为重复谎言工具的理论意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验