Suppr超能文献

机器学习框架在病历处理中的增量设计。

The incremental design of a machine learning framework for medical records processing.

机构信息

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.

Center for Health Care Transformation and Innovation, University of Pennsylvania, Philadelphia, PA 19104, United States.

出版信息

J Am Med Inform Assoc. 2024 Oct 1;31(10):2236-2245. doi: 10.1093/jamia/ocae194.

Abstract

OBJECTIVES

This work presents the development and evaluation of coordn8, a web-based application that streamlines fax processing in outpatient clinics using a "human-in-the-loop" machine learning framework. We demonstrate the effectiveness of the platform at reducing fax processing time and producing accurate machine learning inferences across the tasks of patient identification, document classification, spam classification, and duplicate document detection.

METHODS

We deployed coordn8 in 11 outpatient clinics and conducted a time savings analysis by observing users and measuring fax processing event logs. We used statistical methods to evaluate the machine learning components across different datasets to show generalizability. We conducted a time series analysis to show variations in model performance as new clinics were onboarded and to demonstrate our approach to mitigating model drift.

RESULTS

Our observation analysis showed a mean reduction in individual fax processing time by 147.5 s, while our event log analysis of over 7000 faxes reinforced this finding. Document classification produced an accuracy of 81.6%, patient identification produced an accuracy of 83.7%, spam classification produced an accuracy of 98.4%, and duplicate document detection produced a precision of 81.0%. Retraining document classification increased accuracy by 10.2%.

DISCUSSION

coordn8 significantly decreased fax-processing time and produced accurate machine learning inferences. Our human-in-the-loop framework facilitated the collection of high-quality data necessary for model training. Expanding to new clinics correlated with performance decline, which was mitigated through model retraining.

CONCLUSION

Our framework for automating clinical tasks with machine learning offers a template for health systems looking to implement similar technologies.

摘要

目的

本研究介绍了一种基于网络的应用程序 coordn8 的开发和评估,该应用程序使用“人机交互”机器学习框架简化了门诊中的传真处理。我们展示了该平台在减少传真处理时间和生成准确的机器学习推断方面的有效性,涵盖了患者识别、文档分类、垃圾邮件分类和重复文档检测等任务。

方法

我们在 11 个门诊中部署了 coordn8,并通过观察用户和测量传真处理事件日志进行了节省时间的分析。我们使用统计方法评估了不同数据集上的机器学习组件,以展示其通用性。我们进行了时间序列分析,以展示随着新诊所的加入模型性能的变化,并展示我们缓解模型漂移的方法。

结果

我们的观察分析表明,单个传真处理时间平均减少了 147.5 秒,而我们对超过 7000 份传真的事件日志分析进一步证实了这一发现。文档分类的准确率为 81.6%,患者识别的准确率为 83.7%,垃圾邮件分类的准确率为 98.4%,重复文档检测的精度为 81.0%。重新训练文档分类可将准确率提高 10.2%。

讨论

coordn8 显著减少了传真处理时间,并生成了准确的机器学习推断。我们的人机交互框架促进了收集用于模型训练的高质量数据。随着新诊所的加入,性能下降,但通过模型重新训练得到缓解。

结论

我们使用机器学习自动化临床任务的框架为希望实施类似技术的医疗系统提供了一个模板。

相似文献

本文引用的文献

1
Large language models in medicine.医学中的大型语言模型。
Nat Med. 2023 Aug;29(8):1930-1940. doi: 10.1038/s41591-023-02448-8. Epub 2023 Jul 17.
2
A large language model for electronic health records.用于电子健康记录的大型语言模型。
NPJ Digit Med. 2022 Dec 26;5(1):194. doi: 10.1038/s41746-022-00742-2.
7
Automatic classification of scanned electronic health record documents.扫描电子健康记录文档的自动分类。
Int J Med Inform. 2020 Dec;144:104302. doi: 10.1016/j.ijmedinf.2020.104302. Epub 2020 Oct 17.
8
eReferrals: Why are we still faxing?电子转诊:我们为何仍在传真?
Aust J Gen Pract. 2018 Jan-Feb;47(1-2):50-57. doi: 10.31128/AFP-07-17-4285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验