Suppr超能文献

关于人工智能和机器学习在多发性硬化症诊断、预测及危险因素分析中的应用的分析性综述。

An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis.

作者信息

Pilehvari Shima, Morgan Yasser, Peng Wei

机构信息

University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.

University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.

出版信息

Mult Scler Relat Disord. 2024 Sep;89:105761. doi: 10.1016/j.msard.2024.105761. Epub 2024 Jul 16.

Abstract

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.

摘要

医学研究为疾病预测提供了潜力,如多发性硬化症(MS)。这种神经系统疾病会损害神经细胞的鞘膜,治疗主要集中在缓解症状上。手动检测MS既耗时又容易出错。虽然已经对MS病变检测进行了研究,但对临床分析和计算风险因素预测的关注有限。人工智能(AI)技术和机器学习(ML)方法为描绘MS病情发展提供了准确有效的替代方法。然而,在获取临床数据和跨学科合作方面存在挑战。通过分析103篇论文,我们认识到应用于MS诊断的AI、ML和统计方法的趋势、优势和劣势。建议采用基于AI/ML的方法来识别MS风险因素、选择重要的MS特征并提高诊断准确性,如基于规则的模糊逻辑(RBFL)、自适应模糊推理系统(ANFIS)、人工神经网络方法(ANN)、支持向量机(SVM)和贝叶斯网络(BNs)。同时,扩展残疾状态量表(EDSS)和磁共振成像(MRI)的应用可以提高MS诊断的准确性。通过研究肥胖、吸烟和教育等既定风险因素,一些研究解决了疾病进展问题。MS研究不同方面的性能指标各不相同:诊断:灵敏度从60%到98%,特异性从60%到98%,准确率从61%到97%。预测:灵敏度从76%到98%,特异性从65%到98%,准确率从62%到99%。分割:准确率高达96.7%。分类:灵敏度从78%到97.34%,特异性从65%到99.32%,准确率从71%到97.94%。此外,文献表明,结合多种技术可以提高效率,利用它们的优势实现更好的整体性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验