Suppr超能文献

聚乙烯醇辅助喷雾沉积制备的多孔LiTiO薄膜作为锂离子薄膜电池的高倍率长循环阳极。

PVA-assisted spray deposited porous LiTiO thin film as high-rate and long-cycle anode for lithium-ion thin-film batteries.

作者信息

Lan Tu, Zhou Jinxia, Xie Tianzheng, Huang Kai, Ong Suichang, Yang Huili, Jiang Heng, Zeng Yibo, Zhang Han, Guo Xuanrui, Wan Linyi, Zhang Ying, Guo Hang

机构信息

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005 Xiamen, People's Republic of China.

Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia.

出版信息

J Colloid Interface Sci. 2024 Dec 15;676:1-12. doi: 10.1016/j.jcis.2024.07.007. Epub 2024 Jul 10.

Abstract

Spinel LiTiO (LTO), a zero-strain material, is a promising anode material for solid-state thin-film lithium-ion batteries (TFB). However, the preparation of high-performance LiTiO thin-film electrodes through facile methods remains a significant challenge. Herein, we present a novel approach to prepare a binder- and conductor-free porous LiTiO (P-LTO) thin-film. This approach polyvinyl alcohol (PVA)-assisted spray deposition and does not require the use of complex or expensive methods. Adding PVA to the precursor solution effectively prevents thin-film cracking during high-temperature annealing, enhances adhesion, and forms a highly interconnected porous structure. This unique structure shortens the lithium-ion diffusion pathways and facilitates electron transport. Therefore, P-LTO thin film electrodes demonstrate exceptional rate capacity of 104.1 mAh/g at a current density of 100C. In addition, the electrodes exhibit ultra-long cycle stability, retaining 80.9 % capacity after 10,000 cycles at 10C. This work offers a novel approach for the preparation of high-performance thin-film electrodes for TFBs.

摘要

尖晶石LiTiO(LTO)是一种零应变材料,是固态薄膜锂离子电池(TFB)中一种很有前景的负极材料。然而,通过简便方法制备高性能LiTiO薄膜电极仍然是一项重大挑战。在此,我们提出了一种制备无粘结剂和无导体的多孔LiTiO(P-LTO)薄膜的新方法。这种方法是聚乙烯醇(PVA)辅助喷雾沉积,不需要使用复杂或昂贵的方法。向前驱体溶液中添加PVA可有效防止高温退火过程中薄膜开裂,增强附着力,并形成高度互连的多孔结构。这种独特的结构缩短了锂离子扩散路径并促进电子传输。因此,P-LTO薄膜电极在100C的电流密度下表现出104.1 mAh/g的优异倍率容量。此外,该电极表现出超长的循环稳定性,在10C下循环10000次后仍保留80.9%的容量。这项工作为TFB制备高性能薄膜电极提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验