Speulmanns Jan, Bönhardt Sascha, Weinreich Wenke, Adelhelm Philipp
Center Nanoelectronic Technologies, Fraunhofer Institute for Photonic Microsystems, An der Bartlake 5, 01109, Dresden, Germany.
Department of Chemistry, Humboldt-University Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany.
Small. 2024 Oct;20(42):e2403453. doi: 10.1002/smll.202403453. Epub 2024 Jun 8.
Upcoming energy-autonomous mm-scale Internet-of-things devices require high-energy and high-power microbatteries. On-chip 3D thin-film batteries (TFBs) are the most promising option but lack high-rate anode materials. Here, LiTiO thin films fabricated by atomic layer deposition (ALD) are electrochemically evaluated on 3D substrates for the first time. The 3D LiTiO reveals an excellent footprint capacity of 20.23 µAh cm at 1 C. The outstanding high-rate capability is demonstrated with 7.75 µAh cm at 5 mA cm (250 C) while preserving a remarkable capacity retention of 97.4% after 500 cycles. Planar films with various thicknesses exhibit electrochemical nanoscale effects and are tuned to maximize performance. The developed ALD process enables conformal high-quality spinel (111)-textured LiTiO films on Si substrates with an area enhancement of 9. Interface engineering by employing ultrathin AlO on the current collector facilitates a required crystallization time reduction which ensures high film and interface quality and prospective on-chip integration. This work demonstrates that 3D LiTiO by ALD can be an attractive solution for the microelectronics-compatible fabrication of scalable high-energy and high-power Li-ion 3D TFBs.
即将出现的能量自主的毫米级物联网设备需要高能量和高功率的微型电池。片上3D薄膜电池(TFB)是最有前途的选择,但缺乏高倍率阳极材料。在此,首次对通过原子层沉积(ALD)制备的LiTiO薄膜在3D衬底上进行了电化学评估。3D LiTiO在1 C时显示出20.23 µAh cm的出色占地面积容量。在5 mA cm(250 C)时以7.75 µAh cm展示了出色的高倍率性能,同时在500次循环后保持了97.4%的显著容量保持率。不同厚度的平面薄膜表现出电化学纳米尺度效应,并进行了调整以最大化性能。所开发的ALD工艺能够在Si衬底上实现具有9倍面积增强的共形高质量尖晶石(111)织构的LiTiO薄膜。通过在集流体上采用超薄AlO进行界面工程,有助于减少所需的结晶时间,从而确保高薄膜和界面质量以及预期的片上集成。这项工作表明,通过ALD制备的3D LiTiO对于可扩展的高能量和高功率锂离子3D TFB的微电子兼容制造可能是一种有吸引力的解决方案。