School of Automation, Qingdao University, Qingdao 266071, China; Institute for Future, Qingdao University, Qingdao 266071, China.
College of Computer Science & Technology, Qingdao University, Qingdao 266071, China; Institute for Future, Qingdao University, Qingdao 266071, China.
Comput Biol Med. 2024 Sep;179:108857. doi: 10.1016/j.compbiomed.2024.108857. Epub 2024 Jul 17.
Emotion recognition based on electroencephalogram (EEG) signals is crucial in understanding human affective states. Current research has limitations in extracting local features. The representation capabilities of local features are limited, making it difficult to comprehensively capture emotional information. In this study, a novel approach is proposed to enhance local representation learning through global-local integration with functional connectivity for EEG-based emotion recognition. By leveraging the functional connectivity of brain regions, EEG signals are divided into global embeddings that represent comprehensive brain connectivity patterns throughout the entire process and local embeddings that reflect dynamic interactions within specific brain functional networks at particular moments. Firstly, a convolutional feature extraction branch based on the residual network is designed to extract local features from the global embedding. To further improve the representation ability and accuracy of local features, a multidimensional collaborative attention (MCA) module is introduced. Secondly, the local features and patch embedded local embeddings are integrated into the feature coupling module (FCM), which utilizes hierarchical connections and enhanced cross-attention to couple region-level features, thereby enhancing local representation learning. Experimental results on three public datasets show that compared with other methods, this method improves accuracy by 4.92% on the DEAP, by 1.11% on the SEED, and by 7.76% on the SEED-IV, demonstrating its superior performance in emotion recognition tasks.
基于脑电图 (EEG) 信号的情绪识别对于理解人类情感状态至关重要。目前的研究在提取局部特征方面存在局限性。局部特征的表示能力有限,难以全面捕捉情感信息。在这项研究中,提出了一种新的方法,通过功能连接的全局-局部集成来增强基于 EEG 的情绪识别中的局部表示学习。通过利用脑区的功能连接,将 EEG 信号分为全局嵌入,这些嵌入代表整个过程中全面的脑连接模式,以及局部嵌入,这些嵌入反映特定时刻特定脑功能网络中的动态交互。首先,设计了一个基于残差网络的卷积特征提取分支,从全局嵌入中提取局部特征。为了进一步提高局部特征的表示能力和准确性,引入了多维协作注意 (MCA) 模块。其次,将局部特征和补丁嵌入局部嵌入集成到特征耦合模块 (FCM) 中,该模块利用层次连接和增强的交叉注意来耦合区域级特征,从而增强局部表示学习。在三个公共数据集上的实验结果表明,与其他方法相比,该方法在 DEAP 上的准确率提高了 4.92%,在 SEED 上提高了 1.11%,在 SEED-IV 上提高了 7.76%,在情绪识别任务中表现出优越的性能。