Suppr超能文献

一种基于功能近红外光谱技术的双分支深度学习模型,用于评估三维视觉疲劳。

A dual-branch deep learning model based on fNIRS for assessing 3D visual fatigue.

作者信息

Wu Yan, Mu TianQi, Qu SongNan, Li XiuJun, Li Qi

机构信息

School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China.

Jilin Provincial International Joint Research Center of Brain Informatics and Intelligence Science, Changchun, China.

出版信息

Front Neurosci. 2025 Jun 5;19:1589152. doi: 10.3389/fnins.2025.1589152. eCollection 2025.

Abstract

INTRODUCTION

Extended viewing of 3D content can induce fatigue symptoms. Thus, fatigue assessment is crucial for enhancing the user experience and optimizing the performance of stereoscopic 3D technology. Functional near-infrared spectroscopy (fNIRS) has emerged as a promising tool for evaluating 3D visual fatigue by capturing hemodynamic responses within the cerebral region. However, traditional fNIRS-based methods rely on manual feature extraction and analysis, limiting their effectiveness. To address these limitations, a deep learning model based on fNIRS was constructed for the first time to evaluate 3D visual fatigue, enabling end-to-end automated feature extraction and classification.

METHODS

Twenty normal subjects participated in this study (mean age: 24.6 ± 0.88 years; range: 23-26 years; 13 males). This paper proposed an fNIRS-based experimental paradigm that acquires data under both comfort and fatigue conditions. Given the time-series nature of fNIRS data and the variability of fatigue responses across different brain regions, a dual-branch convolutional network was constructed to separately extract temporal and spatial features. A transformer was integrated into the convolutional network to enhance long-range feature extraction. Furthermore, to adaptively select fNIRS hemodynamic features, a channel attention mechanism was integrated to provide a weighted representation of multiple features.

RESULTS

The constructed model achieved an average accuracy of 93.12% within subjects and 84.65% across subjects, demonstrating its superior performance compared to traditional machine learning models and deep learning models.

DISCUSSION

This study successfully constructed a novel deep learning framework for the automatic evaluation of 3D visual fatigue using fNIRS data. The proposed model addresses the limitations of traditional methods by enabling end-to-end automated feature extraction and classification, eliminating the need for manual intervention. The integration of a transformer module and channel attention mechanism significantly enhanced the model's ability to capture long-range dependencies and adaptively weight hemodynamic features, respectively. The high classification accuracy achieved within and across subjects highlights the model's effectiveness and generalizability. This framework not only advances the field of fNIRS-based fatigue assessment but also provides a valuable tool for improving user experience in stereoscopic 3D applications. Future work could explore the model's applicability to other types of fatigue assessment and further optimize its performance for real-world scenarios.

摘要

引言

长时间观看3D内容会引发疲劳症状。因此,疲劳评估对于提升用户体验和优化立体3D技术的性能至关重要。功能近红外光谱技术(fNIRS)已成为一种很有前景的工具,可通过捕捉大脑区域内的血液动力学反应来评估3D视觉疲劳。然而,传统的基于fNIRS的方法依赖于手动特征提取和分析,限制了其有效性。为解决这些局限性,首次构建了基于fNIRS的深度学习模型来评估3D视觉疲劳,实现了端到端的自动特征提取和分类。

方法

20名正常受试者参与了本研究(平均年龄:24.6±0.88岁;范围:23 - 26岁;13名男性)。本文提出了一种基于fNIRS的实验范式,可在舒适和疲劳条件下采集数据。鉴于fNIRS数据的时间序列性质以及不同脑区疲劳反应的变异性,构建了一个双分支卷积网络来分别提取时间和空间特征。将一个变换器集成到卷积网络中以增强远程特征提取。此外,为了自适应选择fNIRS血液动力学特征,集成了通道注意力机制以提供多个特征的加权表示。

结果

构建的模型在受试者内平均准确率达到93.12%,跨受试者平均准确率达到84.65%,表明其与传统机器学习模型和深度学习模型相比具有卓越性能。

讨论

本研究成功构建了一个新颖的深度学习框架,用于使用fNIRS数据自动评估3D视觉疲劳。所提出的模型通过实现端到端的自动特征提取和分类解决了传统方法的局限性,无需人工干预。变换器模块和通道注意力机制的集成分别显著增强了模型捕捉远程依赖关系和自适应加权血液动力学特征的能力。在受试者内和跨受试者获得的高分类准确率突出了模型的有效性和通用性。该框架不仅推动了基于fNIRS的疲劳评估领域的发展,还为改善立体3D应用中的用户体验提供了有价值的工具。未来的工作可以探索该模型在其他类型疲劳评估中的适用性,并进一步优化其在实际场景中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d53/12176816/7327e0fccccd/fnins-19-1589152-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验