Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA.
Neuron. 2024 Sep 25;112(18):3143-3160.e6. doi: 10.1016/j.neuron.2024.06.018. Epub 2024 Jul 16.
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
在这里,我们通过证明有丝分裂后肠神经元(ENs)的再神经支配潜力,确立了产后肠神经系统内存在可塑性。通过使用 BAF53b-Cre 小鼠进行选择性神经元追踪,在多个模型系统中显示了成熟的产后 ENs 的再神经支配能力。分离的 ENs 在体外再生轴突,其轴突复杂性和方向受与肠神经胶质细胞(EGCs)接触的影响。来自移植 ENs 的神经纤维仅与肌间层内的 EGC 相互作用并沿其行进。在依赖 Cre 的 ENs 消融后,常驻 EGC 仍然存在,并通过神经纤维投射追踪显示出支配肌间神经丛的结构,以对 ENs 进行再神经支配。体内移植和光遗传实验突出了有丝分裂后神经元的快速再神经支配潜力,导致肠道肌肉收缩活动在 2 周内得到恢复。这些研究说明了有丝分裂后 ENs 的结构和功能再神经支配能力,以及 EGC 在指导和塑造其轨迹方面的关键作用。