Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
Dip. di Fisica e Geologia dell'Università degli Studi di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy.
Phys Med Biol. 2024 Jul 26;69(15). doi: 10.1088/1361-6560/ad64b5.
Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGyoutperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGyby 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detectors out to 40 kGy revealed a higher radiation tolerance in the NIP detector compared to the NIP + CSC (17.2% and 33.5% degradations, respectively). Percentage depth dose profiles matched the PTW microDiamond detector's performance to within ±6% for all beam filtrations except in 3T Al-Al due to energy dependence. The 3T Cu-Cu microbeam field profile was reconstructed and returned microbeam width and peak-to-peak values of (51 ± 1)m and (405 ± 5)m, respectively. The peak-to-valley dose ratio was measured as a function of depth and agrees within error to the values obtained with the PTW microDiamond. X-ray beam induced charge mapping of the detector revealed minimal dose perturbations from extra-cameral materials.The detectors are comparable to commercially available dosimeters for quality assurance in MRT. With added benefits of being micron-sized and possessing a flexible water-equivalent substrate, these detectors are attractive candidates for quality assurance,dosimetry and in-line beam monitoring for MRT and FLASH therapy.
用于微束放射治疗 (MRT) 的剂量探测器必须具有固有辐射硬度、高动态范围和微米级空间分辨率。在这项工作中,我们对用于 MRT 剂量测量的氢化非晶硅探测器进行了特性描述,展示了一种具有柔韧性、超薄和辐射硬化功能的新型探测器。我们探索了两种探测器:n 型/本征/p 型平面二极管 (NIP) 和具有附加电荷选择层 (NIP + CSC) 的 NIP。在 3T Cu-Cu 同步加速器宽束下,在 1 V 和 0 kGy 下,NIP + CSC 探测器的灵敏度(7.76 ± 0.01)pC cGy 优于 NIP 探测器的灵敏度(3.55 ± 0.23)pC cGy,提高了 219%。两种探测器的能量依赖性都与硅对水的衰减系数比密切匹配。两种探测器的辐射损伤测量值高达 40 kGy,表明 NIP 探测器的辐射耐受性高于 NIP + CSC(分别为 17.2%和 33.5%的退化)。除了在 3T Al-Al 中由于能量依赖性外,所有光束过滤下的百分深度剂量曲线与 PTW microDiamond 探测器的性能匹配度都在±6%以内。重建了 3T Cu-Cu 微束场轮廓,并分别返回微束宽度和峰到峰值(51 ± 1)m 和(405 ± 5)m。峰值到谷值剂量比作为深度的函数进行测量,并与使用 PTW microDiamond 获得的值误差范围内一致。探测器的 X 射线束感应电荷映射显示出来自额外腔材料的最小剂量干扰。这些探测器可与商业上可用的 MRT 质量保证剂量计相媲美。由于具有微米级尺寸和具有柔韧性的水等效基底的额外优势,这些探测器是 MRT 和 FLASH 治疗的质量保证、剂量测量和在线束监测的有吸引力的候选者。