Suppr超能文献

使用质子微束对 PTW 微金刚石、微硅和 Diode E 剂量计探测器的有源体积进行三维特征描述。

Three-dimensional characterization of the active volumes of PTW microDiamond, microSilicon, and Diode E dosimetry detectors using a proton microbeam.

机构信息

PTW Freiburg, Freiburg, Germany.

University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.

出版信息

Med Phys. 2019 Sep;46(9):4241-4245. doi: 10.1002/mp.13705. Epub 2019 Jul 22.

Abstract

PURPOSE

The purpose of this work is the three-dimensional characterization of the active volumes of commercial solid-state dosimetry detectors. Detailed knowledge of the dimensions of the detector's active volume as well as the detector housing is of particular interest for small-field photon dosimetry. As shown in previous publications from different groups, the design of the detector housing influences the detector signal for small photon fields. Therefore, detailed knowledge of the active volume dimension and the surrounding materials form the basis for accurate Monte Carlo simulations of the detector.

METHODS

A 10 MeV proton beam focused by the microbeam system of the Physikalisch-Technische Bundesanstalt was used to measure two-dimensional response maps of a synthetic diamond detector (microDiamond, type 60019, PTW Freiburg) and two silicon detectors (microSilicon, type 60023, PTW Freiburg and Diode E, type 60017, PTW Freiburg). In addition, the thickness of the active volume of the new microSilicon was measured using the method developed in a previous study.

RESULTS

The analysis of the response maps leads to active area of 1.18 mm for the Diode E, 1.75 mm for the microSilicon, and 3.91 mm for the microDiamond detector. The thickness of the active volume of the microSilicon detector was determined to be (17.8 ± 2) µm.

CONCLUSIONS

This study provides detailed geometrical data of the dosimetric active volume of three different solid-state detector types.

摘要

目的

本工作的目的是对商用固态剂量计探测器的有效体积进行三维特征描述。探测器有效体积及其外壳的详细尺寸对于小射束光子剂量学特别重要。正如来自不同研究小组的先前出版物所示,探测器外壳的设计会影响小光子场中的探测器信号。因此,有效体积尺寸和周围材料的详细知识是探测器精确蒙特卡罗模拟的基础。

方法

使用 Physikalisch-Technische Bundesanstalt 的微束系统聚焦的 10 MeV 质子束,测量了合成金刚石探测器(microDiamond,型号 60019,PTW Freiburg)和两个硅探测器(microSilicon,型号 60023,PTW Freiburg 和 Diode E,型号 60017,PTW Freiburg)的二维响应图。此外,还使用先前研究中开发的方法测量了新型 microSilicon 的有效体积厚度。

结果

响应图的分析得出 Diode E 的有效面积为 1.18mm,microSilicon 的有效面积为 1.75mm,microDiamond 探测器的有效面积为 3.91mm。microSilicon 探测器的有效体积厚度确定为(17.8±2)µm。

结论

本研究提供了三种不同固态探测器类型的剂量学有效体积的详细几何数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验