Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands.
RaySearch Laboratories AB, Stockholm, Sweden.
Int J Radiat Oncol Biol Phys. 2024 Dec 1;120(5):1435-1447. doi: 10.1016/j.ijrobp.2024.07.2146. Epub 2024 Jul 15.
The combined effect of hyperthermia and radiation therapy can be quantified by an enhanced equivalent radiation dose (EQD). Uncertainties in hyperthermia treatment planning and adjustments during treatment can impact achieved EQD. We developed and compared strategies for EQD optimization of radiation therapy plans, focusing on robustness against common adjustments.
Using Plan2Heat, we computed preplanning hyperthermia plans and treatment adjustment scenarios for 3 cervical cancer patients. We imported these scenarios into RayStation 12A for optimization with 4 different strategies: (1) conventional radiation therapy optimization prescribing 46 Gy to the planning target volume (PTV), (2) nominal EQD optimization using the preplanning scenario, targeting uniform 58 Gy in the gross tumor volume (GTV), keeping organs at risk doses as in plan 1, (3) robust EQD optimization, as plan 2 but adding adjusted scenarios for optimization, and (4) library of plans (4 plans) with strategy 2 criteria but optimizing on 1 adjusted scenario per plan. We calculated for each radiation therapy plan EQD distributions for preplanning and adjusted scenarios, evaluating each combination of GTV coverage and homogeneity objectives.
EQD95% increased from 49.9 to 50.9 Gy in strategy 1 to 56.1 to 57.4 Gy in strategy 2 with the preplanning scenario, improving homogeneity by ∼10%. Strategy 2 demonstrated the best overall robustness, with 62% of all GTV objectives within tolerance. Strategy 3 had a higher percentage of coverage objectives within tolerance than strategy 2 (68% vs 54%) but a lower percentage for uniformity (44% vs 71%). Strategy 4 showed a similar EQD95% and homogeneity for adjusted scenarios than strategy 2 for a preplanning scenario. D0.1% (radiation dose received by the 0.1% most irradiated volume) for organs at risk was increased by strategies 2 to 4 by up to ∼6 Gy.
EQD optimization enhances EQD levels and uniformity compared with conventional optimization. Better overall robustness is achieved by optimizing the preplanning hyperthermia plan. Robust optimization improves coverage but reduces homogeneity. A library of plans ensures coverage and uniformity when dealing with adjusted hyperthermia scenarios.
通过增强等效辐射剂量(EQD)可以量化热疗和放射治疗的联合效应。热疗治疗计划中的不确定性和治疗过程中的调整会影响达到的 EQD。我们开发并比较了针对放射治疗计划的 EQD 优化策略,重点关注对常见调整的稳健性。
使用 Plan2Heat,我们为 3 名宫颈癌患者计算了预规划热疗计划和治疗调整方案。我们将这些方案导入 RayStation 12A,使用 4 种不同策略进行优化:(1)常规放射治疗优化,将 46Gy 处方至计划靶区(PTV),(2)使用预规划方案的名义 EQD 优化,将 58Gy 均匀靶向大体肿瘤体积(GTV),保持器官受照剂量与方案 1 相同,(3)稳健的 EQD 优化,与方案 2 相同,但添加调整方案进行优化,(4)具有策略 2 标准的方案库(4 个方案),但每个方案都针对 1 个调整方案进行优化。我们为每个放射治疗计划计算了预规划和调整方案的 EQD 分布,评估了 GTV 覆盖和均匀性目标的每种组合。
在预规划方案中,策略 1 的 EQD95%从 49.9Gy 增加到 50.9Gy,策略 2 从 50.9Gy 增加到 56.1Gy 到 57.4Gy,均匀性提高了约 10%。策略 2 表现出最佳的整体稳健性,62%的 GTV 目标在耐受范围内。策略 3 比策略 2 有更高的覆盖目标在耐受范围内的百分比(68%对 54%),但均匀性较低(44%对 71%)。策略 4 对调整方案的 EQD95%和均匀性与预规划方案的策略 2 相似。对于危及器官,策略 2 至 4 将 D0.1%(受照射量最多的 0.1%体积的辐射剂量)增加了最多约 6Gy。
与常规优化相比,EQD 优化可提高 EQD 水平和均匀性。通过优化预规划热疗计划可以获得更好的整体稳健性。稳健优化可提高覆盖范围,但降低均匀性。方案库可确保在处理调整后的热疗方案时保持覆盖范围和均匀性。