Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Avda. República Árabe Saharaui Democrática 6, 11519, Puerto Real, Cádiz, Spain.
Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain.
Environ Pollut. 2024 Oct 15;359:124563. doi: 10.1016/j.envpol.2024.124563. Epub 2024 Jul 15.
Gulls commonly rely on human-generated waste as their primary food source, contributing to the spread of antibiotic-resistant bacteria and their resistance genes, both locally and globally. Our understanding of this process remains incomplete, particularly in relation to its potential interaction with surrounding soil and water. We studied the lesser black-backed gull, Larus fuscus, as a model to examine the spatial variation of faecal bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) and its relationship with the surrounding water and soil. We conducted sampling campaigns within a connectivity network of different flocks of gulls moving across functional units (FUs), each of which represents a module of highly interconnected patches of habitats used for roosting and feeding. The FUs vary in habitat use, with some gulls using more polluted sites (notably landfills), while others prefer more natural environments (e.g., wetlands or beaches). Faecal bacterial communities in gulls from flocks that visit and spend more time in landfills exhibited higher richness and diversity. The faecal microbiota showed a high compositional overlap with bacterial communities in soil. The overlap was greater when compared to landfill (11%) than to wetland soils (6%), and much lower when compared to bacterial communities in surrounding water (2% and 1% for landfill and wetland water, respectively). The relative abundance of ARGs and MGEs were similar between FUs, with variations observed only for specific families of ARGs and MGEs. When exploring the faecal carriage of ARGs and MGEs in bird faeces relative to soil and water compartments, gull faeces were enriched in ARGs classified as High-Risk. Our results shed light on the complex dynamics of antibiotic resistance spread in wild bird populations, providing insights into the interactions among gull movement and feeding behavior, habitat characteristics, and the dissemination of antibiotic resistance determinants across environmental reservoirs.
海鸥通常依赖人类产生的废物作为其主要食物来源,这导致了抗生素耐药细菌及其耐药基因在本地和全球的传播。我们对这一过程的理解仍然不完整,特别是在其与周围土壤和水的潜在相互作用方面。我们以黑背鸥(Larus fuscus)为模型,研究了粪便细菌群落、抗生素耐药基因(ARGs)和移动遗传元件(MGEs)的空间变异及其与周围水和土壤的关系。我们在不同鸥群的连通网络内进行了采样活动,这些鸥群在功能单元(FUs)之间移动,每个功能单元代表一个高度互联的栖息地斑块模块,用于栖息和觅食。FUs 在栖息地利用方面存在差异,一些海鸥使用污染更严重的地点(尤其是垃圾填埋场),而另一些则更喜欢更自然的环境(如湿地或海滩)。在访问和在垃圾填埋场停留时间更长的鸥群中,粪便细菌群落的丰富度和多样性更高。粪便微生物群与土壤中的细菌群落具有高度的组成重叠。与湿地土壤(6%)相比,这种重叠在与垃圾填埋场(11%)相比时更大,而与周围水(分别为 2%和 1%)相比时则小得多。ARGs 和 MGEs 的相对丰度在 FUs 之间相似,仅观察到特定 ARGs 和 MGEs 家族的变化。当探索鸟类粪便中 ARGs 和 MGEs 的粪便携带情况相对于土壤和水隔室时,鸥类粪便富含被归类为高风险的 ARGs。我们的研究结果揭示了野生鸟类种群中抗生素耐药性传播的复杂动态,深入了解了海鸥运动和觅食行为、栖息地特征以及抗生素耐药决定因素在环境库之间传播的相互作用。