Suppr超能文献

从实验数据中学习随机复杂系统的可解释动力学。

Learning interpretable dynamics of stochastic complex systems from experimental data.

作者信息

Gao Ting-Ting, Barzel Baruch, Yan Gang

机构信息

MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai, P. R. China.

Shanghai Research Institute for Intelligent Autonomous Systems, National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, and Shanghai Key Laboratory of Intelligent Autonomous Systems, Tongji University, Shanghai, P. R. China.

出版信息

Nat Commun. 2024 Jul 17;15(1):6029. doi: 10.1038/s41467-024-50378-x.

Abstract

Complex systems with many interacting nodes are inherently stochastic and best described by stochastic differential equations. Despite increasing observation data, inferring these equations from empirical data remains challenging. Here, we propose the Langevin graph network approach to learn the hidden stochastic differential equations of complex networked systems, outperforming five state-of-the-art methods. We apply our approach to two real systems: bird flock movement and tau pathology diffusion in brains. The inferred equation for bird flocks closely resembles the second-order Vicsek model, providing unprecedented evidence that the Vicsek model captures genuine flocking dynamics. Moreover, our approach uncovers the governing equation for the spread of abnormal tau proteins in mouse brains, enabling early prediction of tau occupation in each brain region and revealing distinct pathology dynamics in mutant mice. By learning interpretable stochastic dynamics of complex systems, our findings open new avenues for downstream applications such as control.

摘要

具有许多相互作用节点的复杂系统本质上是随机的,最好用随机微分方程来描述。尽管观测数据不断增加,但从经验数据中推断这些方程仍然具有挑战性。在这里,我们提出了朗之万图网络方法来学习复杂网络系统的隐藏随机微分方程,其性能优于五种最先进的方法。我们将我们的方法应用于两个真实系统:鸟群运动和大脑中tau蛋白病变的扩散。推断出的鸟群方程与二阶维塞克模型非常相似,这提供了前所未有的证据,证明维塞克模型捕捉到了真正的群聚动力学。此外,我们的方法揭示了异常tau蛋白在小鼠大脑中扩散的控制方程,能够早期预测每个脑区的tau蛋白占据情况,并揭示突变小鼠中不同的病变动力学。通过学习复杂系统的可解释随机动力学,我们的发现为控制等下游应用开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a8d/11254936/0e8ce571740a/41467_2024_50378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验