Farman Muhammad, Akgül Ali, Sultan Muhammad, Riaz Sidra, Asif Hira, Agarwal Praveen, Hassani Murad Khan
Mathematics Research Center, Department of Mathematics, Near East University, Near East Boulevard, 99138, Nicosia, Mersin 10, Turkey.
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
Sci Rep. 2024 Jul 17;14(1):16489. doi: 10.1038/s41598-024-60168-6.
COVID-19 is linked to diabetes, increasing the likelihood and severity of outcomes due to hyperglycemia, immune system impairment, vascular problems, and comorbidities like hypertension, obesity, and cardiovascular disease, which can lead to catastrophic outcomes. The study presents a novel COVID-19 management approach for diabetic patients using a fractal fractional operator and Mittag-Leffler kernel. It uses the Lipschitz criterion and linear growth to identify the solution singularity and analyzes the global derivative impact, confirming unique solutions and demonstrating the bounded nature of the proposed system. The study examines the impact of COVID-19 on individuals with diabetes, using global stability analysis and quantitative examination of equilibrium states. Sensitivity analysis is conducted using reproductive numbers to determine the disease's status in society and the impact of control strategies, highlighting the importance of understanding epidemic problems and their properties. This study uses two-step Lagrange polynomial to analyze the impact of the fractional operator on a proposed model. Numerical simulations using MATLAB validate the effects of COVID-19 on diabetic patients and allow predictions based on the established theoretical framework, supporting the theoretical findings. This study will help to observe and understand how COVID-19 affects people with diabetes. This will help with control plans in the future to lessen the effects of COVID-19.
2019冠状病毒病(COVID-19)与糖尿病有关,会因高血糖、免疫系统受损、血管问题以及高血压、肥胖症和心血管疾病等合并症而增加不良后果的可能性和严重程度,这些可能导致灾难性后果。该研究提出了一种使用分形分数算子和米塔格-莱夫勒核的针对糖尿病患者的新型COVID-19管理方法。它利用利普希茨准则和线性增长来识别解的奇异性,并分析全局导数的影响,确认了唯一解并证明了所提出系统的有界性。该研究使用全局稳定性分析和平衡态的定量检验来考察COVID-19对糖尿病患者的影响。使用繁殖数进行敏感性分析,以确定该疾病在社会中的状况以及控制策略的影响,突出了理解流行病问题及其特性的重要性。本研究使用两步拉格朗日多项式来分析分数算子对所提出模型的影响。使用MATLAB进行的数值模拟验证了COVID-19对糖尿病患者的影响,并基于已建立的理论框架进行预测,支持了理论研究结果。这项研究将有助于观察和理解COVID-19如何影响糖尿病患者。这将有助于未来制定控制计划,以减轻COVID-19的影响。