Suppr超能文献

用于评估肝细胞癌免疫治疗反应和预后的癌症相关成纤维细胞特征的开发

Development of a Cancer-associated Fibroblast Signature for Evaluating Immunotherapy Response and Prognosis of Hepatocellular Carcinoma.

作者信息

Xia Hui, Feng Pei, Wang Wei, Gong Zhao, Ran Jun, Lu Peng, Dai Bin

机构信息

Department of Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, 430022, China.

Department of Rehabilitation Medicine, Wuhan No.1 Hospital, Wuhan, 430022, China.

出版信息

Curr Med Chem. 2024 Jul 15. doi: 10.2174/0109298673322216240711113419.

Abstract

BACKGROUND

Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), and hepatitis B and C are the main pathogenic factors of hepatocellular carcinoma (HCC). Though the current understanding of risk factors for HCC has been improved, patients with this type of cancer are normally diagnosed at advanced stages, posing significant challenges to effective treatment.

METHODS

This study analyzed the HCC datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database (GSE14520 and GSE116174). Stromal and immune cell infiltration in the tumor microenvironment (TME) was quantified by the ESTIMATE algorithm. To identify gene modules associated with cancer-associated fibroblasts (CAFs), weighted gene co-expression network analysis (WGCNA) was performed to develop gene co-expression networks. A CAF prognosis score (CAFPS) model was established based on the prognostic CAF genes screened by univariate and multivariate Cox regression analyses. To determine the role of the genes in the vital module in HCC, we conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Finally, the relationship between CAFPS and drug sensitivity was analyzed using Genomic Data for Cancer Drug Sensitivity (GDSC).

RESULTS

In this study, we found significant differences in immune scores, stromal scores, CAFs scores, and CD4/8 T-cell scores between normal samples and samples with different TNM staging. In particular, the proportion of CAFs was higher than all other cells in normal samples. Gene modules related to CAFs were identified by developing a gene co-expression network using WGCNA analysis. The lightyellow and greenyellow modules showed the highest correlation with CAF scores. Univariate COX analysis identified 12 genes related to HCC prognosis from a total of 191 genes in the two modules. The Kaplan-Meier (KM) survival analysis revealed that a high expression of these genes was associated with a lower survival chance. Based on the 12 genes obtained by univariate COX analysis, multivariate COX analysis was performed to construct a risk score model for the characteristics of CAFs (CAFPS). The KM survival curves of patients in the high CAFPS and low CAFPS groups showed that patients in the low CAFPS group had better survival.

CONCLUSION

CAFs played a crucial role in the pathogenesis and treatment response of HCC. Targeting the CAFs milieu may provide therapeutic benefits, highlighting the importance of CAFS in developing a personalized treatment for HCC patients. Further studies are required to verify the current findings and explore their implications in clinical settings.

摘要

背景

酒精滥用、非酒精性脂肪性肝病(NAFLD)以及乙型和丙型肝炎是肝细胞癌(HCC)的主要致病因素。尽管目前对HCC危险因素的认识有所提高,但这类癌症患者通常在晚期才被诊断出来,这给有效治疗带来了重大挑战。

方法

本研究分析了来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)(GSE14520和GSE116174)的HCC数据集。通过ESTIMATE算法对肿瘤微环境(TME)中的基质和免疫细胞浸润进行定量分析。为了识别与癌症相关成纤维细胞(CAF)相关的基因模块,进行加权基因共表达网络分析(WGCNA)以构建基因共表达网络。基于单变量和多变量Cox回归分析筛选出的预后CAF基因,建立了CAF预后评分(CAFPS)模型。为了确定关键模块中的基因在HCC中的作用,我们进行了基因本体(GO)和京都基因与基因组百科全书(KEGG)分析。最后,使用癌症药物敏感性基因组数据(GDSC)分析CAFPS与药物敏感性之间的关系。

结果

在本研究中,我们发现正常样本与不同TNM分期的样本在免疫评分、基质评分、CAF评分和CD4/8 T细胞评分方面存在显著差异。特别是,正常样本中CAF的比例高于所有其他细胞。通过WGCNA分析构建基因共表达网络,鉴定出与CAF相关的基因模块。浅黄和绿黄模块与CAF评分的相关性最高。单变量COX分析从两个模块中的总共191个基因中鉴定出12个与HCC预后相关的基因。Kaplan-Meier(KM)生存分析表明,这些基因的高表达与较低的生存几率相关。基于单变量COX分析获得的12个基因,进行多变量COX分析以构建CAF特征的风险评分模型(CAFPS)。高CAFPS组和低CAFPS组患者的KM生存曲线表明,低CAFPS组患者的生存情况更好。

结论

CAF在HCC的发病机制和治疗反应中起着关键作用。针对CAF环境可能带来治疗益处,凸显了CAFS在为HCC患者制定个性化治疗方案中的重要性。需要进一步研究来验证当前的发现,并探索其在临床环境中的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验