Suppr超能文献

关于在公共卫生中正确使用频率学派推断统计学。

For a proper use of frequentist inferential statistics in public health.

作者信息

Rovetta Alessandro, Mansournia Mohammad Ali, Vitale Alessandro

机构信息

Research & Disclosure, R&C Research, Bovezzo (BS), Italy.

Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Glob Epidemiol. 2024 Jun 15;8:100151. doi: 10.1016/j.gloepi.2024.100151. eCollection 2024 Dec.

Abstract

As widely noted in the literature and by international bodies such as the American Statistical Association, severe misinterpretations of -values, confidence intervals, and statistical significance are sadly common in public health. This scenario poses serious risks concerning terminal decisions such as the approval or rejection of therapies. Cognitive distortions about statistics likely stem from poor teaching in schools and universities, overly simplified interpretations, and - as we suggest - the reckless use of calculation software with predefined standardized procedures. In light of this, we present a framework to recalibrate the role of frequentist-inferential statistics within clinical and epidemiological research. In particular, we stress that statistics is only a set of rules and numbers that make sense only when properly placed within a well-defined scientific context beforehand. Practical examples are discussed for educational purposes. Alongside this, we propose some tools to better evaluate statistical outcomes, such as multiple compatibility or surprisal intervals or tuples of various point hypotheses. Lastly, we emphasize that every conclusion must be informed by different kinds of scientific evidence (e.g., biochemical, clinical, statistical, etc.) and must be based on a careful examination of costs, risks, and benefits.

摘要

正如文献以及美国统计协会等国际机构广泛指出的那样,在公共卫生领域,对p值、置信区间和统计显著性的严重误解令人遗憾地普遍存在。这种情况给诸如批准或拒绝治疗等最终决策带来了严重风险。对统计学的认知扭曲可能源于中小学和大学教学质量不佳、过于简化的解释,以及——如我们所指出的——对具有预定义标准化程序的计算软件的轻率使用。有鉴于此,我们提出了一个框架,以重新校准频率推断统计在临床和流行病学研究中的作用。特别是,我们强调统计学只是一组规则和数字,只有事先恰当地置于明确界定的科学背景中才有意义。为了教学目的,我们讨论了一些实际例子。与此同时,我们提出了一些工具,以更好地评估统计结果,例如多重兼容性或意外区间或各种点假设的元组。最后,我们强调,每一个结论都必须以不同类型的科学证据(如生化、临床、统计等)为依据,并且必须基于对成本、风险和收益的仔细审查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e0/11252774/ae6a4833f27a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验