Suppr超能文献

用于物理医学和远程康复研究的创新混合云解决方案。

Innovative Hybrid Cloud Solutions for Physical Medicine and Telerehabilitation Research.

作者信息

Malakhov Kyrylo S

机构信息

V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine.

出版信息

Int J Telerehabil. 2024 Jun 28;16(1):e6635. doi: 10.5195/ijt.2024.6635. eCollection 2024.

Abstract

PURPOSE

The primary objective of this study was to develop and implement a Hybrid Cloud Environment for Telerehabilitation (HCET) to enhance patient care and research in the Physical Medicine and Rehabilitation (PM&R) domain. This environment aims to integrate advanced information and communication technologies to support both traditional in-person therapy and digital health solutions.

BACKGROUND

Telerehabilitation is emerging as a core component of modern healthcare, especially within the PM&R field. By applying digital health technologies, telerehabilitation provides continuous, comprehensive support for patient rehabilitation, bridging the gap between traditional therapy, and remote healthcare delivery. This study focuses on the design, and implementation of a hybrid HCET system tailored for the PM&R domain.

METHODS

The study involved the development of a comprehensive architectural and structural organization for the HCET, including a three-layer model (infrastructure, platform, service layers). Core components of the HCET were designed and implemented, such as the Hospital Information System (HIS) for PM&R, the MedRehabBot system, and the MedLocalGPT project. These components were integrated using advanced technologies like large language models (LLMs), word embeddings, and ontology-related approaches, along with APIs for enhanced functionality and interaction.

FINDINGS

The HCET system was successfully implemented and is operational, providing a robust platform for telerehabilitation. Key features include the MVP of the HIS for PM&R, supporting patient profile management, and rehabilitation goal tracking; the MedRehabBot and WhiteBookBot systems; and the MedLocalGPT project, which offers sophisticated querying capabilities, and access to extensive domain-specific knowledge. The system supports both Ukrainian and English languages, ensuring broad accessibility and usability.

INTERPRETATION

The practical implementation, and operation of the HCET system demonstrate its potential to transform telerehabilitation within the PM&R domain. By integrating advanced technologies, and providing comprehensive digital health solutions, the HCET enhances patient care, supports ongoing rehabilitation, and facilitates advanced research. Future work will focus on optimizing services and expanding language support to further improve the system's functionality and impact.

摘要

目的

本研究的主要目标是开发并实施用于远程康复的混合云环境(HCET),以加强物理医学与康复(PM&R)领域的患者护理和研究。该环境旨在整合先进的信息和通信技术,以支持传统的面对面治疗和数字健康解决方案。

背景

远程康复正在成为现代医疗保健的核心组成部分,尤其是在PM&R领域。通过应用数字健康技术,远程康复为患者康复提供持续、全面的支持,弥合传统治疗与远程医疗服务之间的差距。本研究专注于为PM&R领域量身定制的混合HCET系统的设计与实施。

方法

该研究涉及为HCET开发全面的架构和结构组织,包括三层模型(基础设施层、平台层、服务层)。设计并实施了HCET的核心组件,如用于PM&R的医院信息系统(HIS)、MedRehabBot系统和MedLocalGPT项目。这些组件使用大语言模型(LLMs)、词嵌入和本体相关方法等先进技术以及用于增强功能和交互的应用程序编程接口(APIs)进行集成。

结果

HCET系统已成功实施并投入运行,为远程康复提供了一个强大的平台。关键特性包括用于PM&R的HIS的最小可行产品(MVP),支持患者档案管理和康复目标跟踪;MedRehabBot和WhiteBookBot系统;以及MedLocalGPT项目,该项目提供复杂的查询功能,并可访问广泛的特定领域知识。该系统支持乌克兰语和英语,确保广泛的可访问性和可用性。

解读

HCET系统的实际实施和运行证明了其在PM&R领域变革远程康复的潜力。通过整合先进技术并提供全面的数字健康解决方案,HCET加强了患者护理,支持持续康复,并促进了先进研究。未来的工作将集中在优化服务和扩展语言支持,以进一步提高系统的功能和影响力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786e/11249847/fb58cb509e97/ijt-16-1-e6635-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验