Suppr超能文献

基于学习的畸变校正实现了近端扫描内镜光学相干断层扫描弹性成像。

Learning-based distortion correction enables proximal-scanning endoscopic OCT elastography.

作者信息

Zhang Haoran, Gu Chengfu, Lan Qi, Zhang Weiyi, Liu Chang, Yang Jianlong

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Biomed Opt Express. 2024 Jun 26;15(7):4345-4364. doi: 10.1364/BOE.528522. eCollection 2024 Jul 1.

Abstract

Proximal rotary scanning is predominantly used in the clinical practice of endoscopic and intravascular OCT, mainly because of the much lower manufacturing cost of the probe compared to distal scanning. However, proximal scanning causes severe beam stability issues (also known as non-uniform rotational distortion, NURD), which hinders the extension of its applications to functional imaging, such as OCT elastography (OCE). In this work, we demonstrate the abilities of learning-based NURD correction methods to enable the imaging stability required for intensity-based OCE. Compared with the previous learning-based NURD correction methods that use pseudo distortion vectors for model training, we propose a method to extract real distortion vectors from a specific endoscopic OCT system, and validate its superiority in accuracy under both convolutional-neural-network- and transformer-based learning architectures. We further verify its effectiveness in elastography calculations (digital image correlation and optical flow) and the advantages of our method over other NURD correction methods. Using the air pressure of a balloon catheter as a mechanical stimulus, our proximal-scanning endoscopic OCE could effectively differentiate between areas of varying stiffness of atherosclerotic vascular phantoms. Compared with the existing endoscopic OCE methods that measure only in the radial direction, our method could achieve 2D displacement/strain distribution in both radial and circumferential directions.

摘要

近端旋转扫描主要用于内镜和血管内光学相干断层扫描(OCT)的临床实践中,主要原因是与远端扫描相比,探头的制造成本要低得多。然而,近端扫描会导致严重的光束稳定性问题(也称为非均匀旋转畸变,NURD),这阻碍了其在功能成像(如OCT弹性成像,OCE)中的应用扩展。在这项工作中,我们展示了基于学习的NURD校正方法实现基于强度的OCE所需成像稳定性的能力。与之前使用伪畸变向量进行模型训练的基于学习的NURD校正方法相比,我们提出了一种从特定内镜OCT系统中提取真实畸变向量的方法,并在基于卷积神经网络和基于Transformer的学习架构下验证了其在准确性方面的优越性。我们进一步验证了其在弹性成像计算(数字图像相关和光流)中的有效性以及我们的方法相对于其他NURD校正方法的优势。使用球囊导管的气压作为机械刺激,我们的近端扫描内镜OCE能够有效区分动脉粥样硬化血管模型不同硬度的区域。与现有的仅在径向方向进行测量的内镜OCE方法相比,我们的方法能够在径向和周向方向上实现二维位移/应变分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d74e/11249688/5dd154297b36/boe-15-7-4345-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验