Kazemzadeh Mohammadrahim, Martinez-Calderon Miguel, Otupiri Robert, Artuyants Anastasiia, Lowe MoiMoi, Ning Xia, Reategui Eduardo, Schultz Zachary D, Xu Weiliang, Blenkiron Cherie, Chamley Lawrence W, Broderick Neil G R, Hisey Colin L
Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand.
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand.
Biomed Opt Express. 2024 Jun 10;15(7):4220-4236. doi: 10.1364/BOE.522376. eCollection 2024 Jul 1.
Surface-enhanced Raman spectroscopy (SERS) is a powerful tool that provides valuable insight into the molecular contents of chemical and biological samples. However, interpreting Raman spectra from complex or dynamic datasets remains challenging, particularly for highly heterogeneous biological samples like extracellular vesicles (EVs). To overcome this, we developed a tunable and interpretable deep autoencoder for the analysis of several challenging Raman spectroscopy applications, including synthetic datasets, chemical mixtures, a chemical milling reaction, and mixtures of EVs. We compared the results with classical methods (PCA and UMAP) to demonstrate the superior performance of the proposed technique. Our method can handle small datasets, provide a high degree of generalization such that it can fill unknown gaps within spectral datasets, and even quantify relative ratios of cell line-derived EVs to fetal bovine serum-derived EVs within mixtures. This simple yet robust approach will greatly improve the analysis capabilities for many other Raman spectroscopy applications.
表面增强拉曼光谱(SERS)是一种强大的工具,能为化学和生物样品的分子成分提供有价值的见解。然而,解读来自复杂或动态数据集的拉曼光谱仍然具有挑战性,特别是对于像细胞外囊泡(EVs)这样高度异质的生物样品。为了克服这一问题,我们开发了一种可调谐且可解释的深度自动编码器,用于分析多个具有挑战性的拉曼光谱应用,包括合成数据集、化学混合物、化学铣削反应以及细胞外囊泡混合物。我们将结果与经典方法(主成分分析和均匀流形近似投影)进行比较,以证明所提出技术的卓越性能。我们的方法可以处理小数据集,具有高度的泛化能力,能够填补光谱数据集中的未知空白,甚至可以量化混合物中细胞系来源的细胞外囊泡与胎牛血清来源的细胞外囊泡的相对比例。这种简单而稳健的方法将极大地提高许多其他拉曼光谱应用的分析能力。