Suppr超能文献

用于细胞膜上生物分子弱拉曼光谱分类和特征可视化的可解释多尺度卷积神经网络

Interpretable Multiscale Convolutional Neural Network for Classification and Feature Visualization of Weak Raman Spectra of Biomolecules at Cell Membranes.

作者信息

Chin Che-Lun, Chang Chia-En, Chao Ling

机构信息

Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.

出版信息

ACS Sens. 2025 Apr 25;10(4):2652-2666. doi: 10.1021/acssensors.4c03260. Epub 2025 Apr 4.

Abstract

Raman spectroscopy in biological applications faces challenges due to complex spectra, characterized by peaks of varying widths and significant biological background noise. Convolutional neural networks (CNNs) are widely used for spectrum classification due to their ability to capture local peak features. In this study, we introduce a multiscale CNN designed to detect weak biomolecule signals and differentiate spectra with features that cannot be statistically distinguished. The approach is further enhanced by a new visualization technique tailored for multiscale spectral analysis, providing clear insights into classification results. Using the classification of cholera toxin B subunit (CTB)-treated versus untreated cell membrane samples, whose spectra cannot be statistically differentiated, the optimized multiscale CNN achieved superior performance compared to traditional machine learning methods and existing multiscale CNNs, with accuracy (99.22%), sensitivity (99.27%), specificity (99.16%), and precision (99.20%). Our new visualization method, based on gradients of activation maps with respect to class scores, generates saliency scores that capture sample variations, with decision-making relying on consistently identified peak features. By visualizing the effects of different kernel sizes, Grad-AM highlights features at varying scales, aligning closely with spectral features and enhancing CNN interpretability in complex biomolecular analysis. These advancements demonstrate the potential of our method to improve spectral analysis and reveal previously hidden peaks in complex biological environments.

摘要

拉曼光谱在生物应用中面临挑战,因为其光谱复杂,具有宽度各异的峰以及显著的生物背景噪声。卷积神经网络(CNN)因其能够捕捉局部峰特征而被广泛用于光谱分类。在本研究中,我们引入了一种多尺度CNN,旨在检测微弱的生物分子信号,并区分具有无法通过统计方法区分特征的光谱。一种专为多尺度光谱分析量身定制的新可视化技术进一步增强了该方法,为分类结果提供了清晰的见解。使用霍乱毒素B亚基(CTB)处理过的与未处理的细胞膜样本的分类(其光谱无法通过统计方法区分),优化后的多尺度CNN与传统机器学习方法和现有的多尺度CNN相比,表现出卓越的性能,准确率为99.22%,灵敏度为99.27%,特异性为99.16%,精确率为99.20%。我们基于激活图相对于类别分数的梯度的新可视化方法生成了捕捉样本变化的显著性分数,决策依赖于一致识别出的峰特征。通过可视化不同内核大小的效果,梯度加权类激活映射(Grad-AM)突出了不同尺度的特征,与光谱特征紧密对齐,并增强了CNN在复杂生物分子分析中的可解释性。这些进展证明了我们的方法在改善光谱分析以及揭示复杂生物环境中先前隐藏的峰方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6d/12038881/044d55d9b098/se4c03260_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验